PyTorch梯度下降反向传播

前言:

反向传播的目的是计算成本函数C对网络中任意w或b的偏导数。一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差。这是流行的梯度下降算法。而偏导数给出了最大上升的方向。因此,关于反向传播算法,我们继续查看下文。

我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向

如题:

意思是利用这个二次模型来预测数据,减小损失函数(MSE)的值。

代码如下:

import torch
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]  =  "TRUE"
# 数据集
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
# 权重参数初始值均为1
w = torch.tensor([1.0,1.0,1.0])
w.requires_grad = True    # 需要计算梯度

# 前向传播
def forward(x):
    return w[0]*(x**2)+w[1]*x+w[2]
# 计算损失
def loss(x,y):
    y_pred = forward(x)
    return (y_pred-y) ** 2

# 训练模块
print('predict (before tranining) ',4, forward(4).item())
epoch_list = []
w_list = []
loss_list = []
for epoch in range(1000):
    for x,y in zip(x_data,y_data):
        l = loss(x,y)
        l.backward()        # 后向传播
        print('\tgrad: ',x,y,w.grad.data)
        w.data = w.data - 0.01 * w.grad.data        # 梯度下降
        
        w.grad.data.zero_()    # 梯度清零操作
        
    print('progress: ',epoch,l.item())
    epoch_list.append(epoch)
    w_list.append(w.data)
    loss_list.append(l.item())
print('predict (after tranining) ',4, forward(4).item())

# 绘图
plt.plot(epoch_list,loss_list,'b')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid()
plt.show()

结果如下:

predict (before tranining)  4 21.0
    grad:  1.0 2.0 tensor([2., 2., 2.])
    grad:  2.0 4.0 tensor([22.8800, 11.4400,  5.7200])
    grad:  3.0 6.0 tensor([77.0472, 25.6824,  8.5608])
progress:  0 18.321826934814453
    grad:  1.0 2.0 tensor([-1.1466, -1.1466, -1.1466])
    grad:  2.0 4.0 tensor([-15.5367,  -7.7683,  -3.8842])
    grad:  3.0 6.0 tensor([-30.4322, -10.1441,  -3.3814])
progress:  1 2.858394145965576
    grad:  1.0 2.0 tensor([0.3451, 0.3451, 0.3451])
    grad:  2.0 4.0 tensor([2.4273, 1.2137, 0.6068])
    grad:  3.0 6.0 tensor([19.4499,  6.4833,  2.1611])
progress:  2 1.1675907373428345
    grad:  1.0 2.0 tensor([-0.3224, -0.3224, -0.3224])
    grad:  2.0 4.0 tensor([-5.8458, -2.9229, -1.4614])
    grad:  3.0 6.0 tensor([-3.8829, -1.2943, -0.4314])
progress:  3 0.04653334245085716
    grad:  1.0 2.0 tensor([0.0137, 0.0137, 0.0137])
    grad:  2.0 4.0 tensor([-1.9141, -0.9570, -0.4785])
    grad:  3.0 6.0 tensor([6.8557, 2.2852, 0.7617])
progress:  4 0.14506366848945618
    grad:  1.0 2.0 tensor([-0.1182, -0.1182, -0.1182])
    grad:  2.0 4.0 tensor([-3.6644, -1.8322, -0.9161])
    grad:  3.0 6.0 tensor([1.7455, 0.5818, 0.1939])
progress:  5 0.009403289295732975
    grad:  1.0 2.0 tensor([-0.0333, -0.0333, -0.0333])
    grad:  2.0 4.0 tensor([-2.7739, -1.3869, -0.6935])
    grad:  3.0 6.0 tensor([4.0140, 1.3380, 0.4460])
progress:  6 0.04972923547029495
    grad:  1.0 2.0 tensor([-0.0501, -0.0501, -0.0501])
    grad:  2.0 4.0 tensor([-3.1150, -1.5575, -0.7788])
    grad:  3.0 6.0 tensor([2.8534, 0.9511, 0.3170])
progress:  7 0.025129113346338272
    grad:  1.0 2.0 tensor([-0.0205, -0.0205, -0.0205])
    grad:  2.0 4.0 tensor([-2.8858, -1.4429, -0.7215])
    grad:  3.0 6.0 tensor([3.2924, 1.0975, 0.3658])
progress:  8 0.03345605731010437
    grad:  1.0 2.0 tensor([-0.0134, -0.0134, -0.0134])
    grad:  2.0 4.0 tensor([-2.9247, -1.4623, -0.7312])
    grad:  3.0 6.0 tensor([2.9909, 0.9970, 0.3323])
progress:  9 0.027609655633568764
    grad:  1.0 2.0 tensor([0.0033, 0.0033, 0.0033])
    grad:  2.0 4.0 tensor([-2.8414, -1.4207, -0.7103])
    grad:  3.0 6.0 tensor([3.0377, 1.0126, 0.3375])
progress:  10 0.02848036028444767
    grad:  1.0 2.0 tensor([0.0148, 0.0148, 0.0148])
    grad:  2.0 4.0 tensor([-2.8174, -1.4087, -0.7043])
    grad:  3.0 6.0 tensor([2.9260, 0.9753, 0.3251])
progress:  11 0.02642466314136982
    grad:  1.0 2.0 tensor([0.0280, 0.0280, 0.0280])
    grad:  2.0 4.0 tensor([-2.7682, -1.3841, -0.6920])
    grad:  3.0 6.0 tensor([2.8915, 0.9638, 0.3213])
progress:  12 0.025804826989769936
    grad:  1.0 2.0 tensor([0.0397, 0.0397, 0.0397])
    grad:  2.0 4.0 tensor([-2.7330, -1.3665, -0.6832])
    grad:  3.0 6.0 tensor([2.8243, 0.9414, 0.3138])
progress:  13 0.02462013065814972
    grad:  1.0 2.0 tensor([0.0514, 0.0514, 0.0514])
    grad:  2.0 4.0 tensor([-2.6934, -1.3467, -0.6734])
    grad:  3.0 6.0 tensor([2.7756, 0.9252, 0.3084])
progress:  14 0.023777369409799576
    grad:  1.0 2.0 tensor([0.0624, 0.0624, 0.0624])
    grad:  2.0 4.0 tensor([-2.6580, -1.3290, -0.6645])
    grad:  3.0 6.0 tensor([2.7213, 0.9071, 0.3024])
progress:  15 0.0228563379496336
    grad:  1.0 2.0 tensor([0.0731, 0.0731, 0.0731])
    grad:  2.0 4.0 tensor([-2.6227, -1.3113, -0.6557])
    grad:  3.0 6.0 tensor([2.6725, 0.8908, 0.2969])
progress:  16 0.022044027224183083
    grad:  1.0 2.0 tensor([0.0833, 0.0833, 0.0833])
    grad:  2.0 4.0 tensor([-2.5893, -1.2946, -0.6473])
    grad:  3.0 6.0 tensor([2.6240, 0.8747, 0.2916])
progress:  17 0.02125072106719017
    grad:  1.0 2.0 tensor([0.0931, 0.0931, 0.0931])
    grad:  2.0 4.0 tensor([-2.5568, -1.2784, -0.6392])
    grad:  3.0 6.0 tensor([2.5780, 0.8593, 0.2864])
progress:  18 0.020513182505965233
    grad:  1.0 2.0 tensor([0.1025, 0.1025, 0.1025])
    grad:  2.0 4.0 tensor([-2.5258, -1.2629, -0.6314])
    grad:  3.0 6.0 tensor([2.5335, 0.8445, 0.2815])
progress:  19 0.019810274243354797
    grad:  1.0 2.0 tensor([0.1116, 0.1116, 0.1116])
    grad:  2.0 4.0 tensor([-2.4958, -1.2479, -0.6239])
    grad:  3.0 6.0 tensor([2.4908, 0.8303, 0.2768])
progress:  20 0.019148115068674088
    grad:  1.0 2.0 tensor([0.1203, 0.1203, 0.1203])
    grad:  2.0 4.0 tensor([-2.4669, -1.2335, -0.6167])
    grad:  3.0 6.0 tensor([2.4496, 0.8165, 0.2722])
progress:  21 0.018520694226026535
    grad:  1.0 2.0 tensor([0.1286, 0.1286, 0.1286])
    grad:  2.0 4.0 tensor([-2.4392, -1.2196, -0.6098])
    grad:  3.0 6.0 tensor([2.4101, 0.8034, 0.2678])
progress:  22 0.017927465960383415
    grad:  1.0 2.0 tensor([0.1367, 0.1367, 0.1367])
    grad:  2.0 4.0 tensor([-2.4124, -1.2062, -0.6031])
    grad:  3.0 6.0 tensor([2.3720, 0.7907, 0.2636])
progress:  23 0.01736525259912014
    grad:  1.0 2.0 tensor([0.1444, 0.1444, 0.1444])
    grad:  2.0 4.0 tensor([-2.3867, -1.1933, -0.5967])
    grad:  3.0 6.0 tensor([2.3354, 0.7785, 0.2595])
progress:  24 0.016833148896694183
    grad:  1.0 2.0 tensor([0.1518, 0.1518, 0.1518])
    grad:  2.0 4.0 tensor([-2.3619, -1.1810, -0.5905])
    grad:  3.0 6.0 tensor([2.3001, 0.7667, 0.2556])
progress:  25 0.01632905937731266
    grad:  1.0 2.0 tensor([0.1589, 0.1589, 0.1589])
    grad:  2.0 4.0 tensor([-2.3380, -1.1690, -0.5845])
    grad:  3.0 6.0 tensor([2.2662, 0.7554, 0.2518])
progress:  26 0.01585075818002224
    grad:  1.0 2.0 tensor([0.1657, 0.1657, 0.1657])
    grad:  2.0 4.0 tensor([-2.3151, -1.1575, -0.5788])
    grad:  3.0 6.0 tensor([2.2336, 0.7445, 0.2482])
progress:  27 0.015397666022181511
    grad:  1.0 2.0 tensor([0.1723, 0.1723, 0.1723])
    grad:  2.0 4.0 tensor([-2.2929, -1.1465, -0.5732])
    grad:  3.0 6.0 tensor([2.2022, 0.7341, 0.2447])
progress:  28 0.014967591501772404
    grad:  1.0 2.0 tensor([0.1786, 0.1786, 0.1786])
    grad:  2.0 4.0 tensor([-2.2716, -1.1358, -0.5679])
    grad:  3.0 6.0 tensor([2.1719, 0.7240, 0.2413])
progress:  29 0.014559715054929256
    grad:  1.0 2.0 tensor([0.1846, 0.1846, 0.1846])
    grad:  2.0 4.0 tensor([-2.2511, -1.1255, -0.5628])
    grad:  3.0 6.0 tensor([2.1429, 0.7143, 0.2381])
progress:  30 0.014172340743243694
    grad:  1.0 2.0 tensor([0.1904, 0.1904, 0.1904])
    grad:  2.0 4.0 tensor([-2.2313, -1.1157, -0.5578])
    grad:  3.0 6.0 tensor([2.1149, 0.7050, 0.2350])
progress:  31 0.013804304413497448
    grad:  1.0 2.0 tensor([0.1960, 0.1960, 0.1960])
    grad:  2.0 4.0 tensor([-2.2123, -1.1061, -0.5531])
    grad:  3.0 6.0 tensor([2.0879, 0.6960, 0.2320])
progress:  32 0.013455045409500599
    grad:  1.0 2.0 tensor([0.2014, 0.2014, 0.2014])
    grad:  2.0 4.0 tensor([-2.1939, -1.0970, -0.5485])
    grad:  3.0 6.0 tensor([2.0620, 0.6873, 0.2291])
progress:  33 0.013122711330652237
    grad:  1.0 2.0 tensor([0.2065, 0.2065, 0.2065])
    grad:  2.0 4.0 tensor([-2.1763, -1.0881, -0.5441])
    grad:  3.0 6.0 tensor([2.0370, 0.6790, 0.2263])
progress:  34 0.01280694268643856
    grad:  1.0 2.0 tensor([0.2114, 0.2114, 0.2114])
    grad:  2.0 4.0 tensor([-2.1592, -1.0796, -0.5398])
    grad:  3.0 6.0 tensor([2.0130, 0.6710, 0.2237])
progress:  35 0.012506747618317604
    grad:  1.0 2.0 tensor([0.2162, 0.2162, 0.2162])
    grad:  2.0 4.0 tensor([-2.1428, -1.0714, -0.5357])
    grad:  3.0 6.0 tensor([1.9899, 0.6633, 0.2211])
progress:  36 0.012220758944749832
    grad:  1.0 2.0 tensor([0.2207, 0.2207, 0.2207])
    grad:  2.0 4.0 tensor([-2.1270, -1.0635, -0.5317])
    grad:  3.0 6.0 tensor([1.9676, 0.6559, 0.2186])
progress:  37 0.01194891706109047
    grad:  1.0 2.0 tensor([0.2251, 0.2251, 0.2251])
    grad:  2.0 4.0 tensor([-2.1118, -1.0559, -0.5279])
    grad:  3.0 6.0 tensor([1.9462, 0.6487, 0.2162])
progress:  38 0.011689926497638226
    grad:  1.0 2.0 tensor([0.2292, 0.2292, 0.2292])
    grad:  2.0 4.0 tensor([-2.0971, -1.0485, -0.5243])
    grad:  3.0 6.0 tensor([1.9255, 0.6418, 0.2139])
progress:  39 0.01144315768033266
    grad:  1.0 2.0 tensor([0.2333, 0.2333, 0.2333])
    grad:  2.0 4.0 tensor([-2.0829, -1.0414, -0.5207])
    grad:  3.0 6.0 tensor([1.9057, 0.6352, 0.2117])
progress:  40 0.011208509095013142
    grad:  1.0 2.0 tensor([0.2371, 0.2371, 0.2371])
    grad:  2.0 4.0 tensor([-2.0693, -1.0346, -0.5173])
    grad:  3.0 6.0 tensor([1.8865, 0.6288, 0.2096])
progress:  41 0.0109840864315629
    grad:  1.0 2.0 tensor([0.2408, 0.2408, 0.2408])
    grad:  2.0 4.0 tensor([-2.0561, -1.0280, -0.5140])
    grad:  3.0 6.0 tensor([1.8681, 0.6227, 0.2076])
progress:  42 0.010770938359200954
    grad:  1.0 2.0 tensor([0.2444, 0.2444, 0.2444])
    grad:  2.0 4.0 tensor([-2.0434, -1.0217, -0.5108])
    grad:  3.0 6.0 tensor([1.8503, 0.6168, 0.2056])
progress:  43 0.010566935874521732
    grad:  1.0 2.0 tensor([0.2478, 0.2478, 0.2478])
    grad:  2.0 4.0 tensor([-2.0312, -1.0156, -0.5078])
    grad:  3.0 6.0 tensor([1.8332, 0.6111, 0.2037])
progress:  44 0.010372749529778957
    grad:  1.0 2.0 tensor([0.2510, 0.2510, 0.2510])
    grad:  2.0 4.0 tensor([-2.0194, -1.0097, -0.5048])
    grad:  3.0 6.0 tensor([1.8168, 0.6056, 0.2019])
progress:  45 0.010187389329075813
    grad:  1.0 2.0 tensor([0.2542, 0.2542, 0.2542])

    grad:  2.0 4.0 tensor([-2.0080, -1.0040, -0.5020])
    grad:  3.0 6.0 tensor([1.8009, 0.6003, 0.2001])
progress:  46 0.010010283440351486
    grad:  1.0 2.0 tensor([0.2572, 0.2572, 0.2572])
    grad:  2.0 4.0 tensor([-1.9970, -0.9985, -0.4992])
    grad:  3.0 6.0 tensor([1.7856, 0.5952, 0.1984])
progress:  47 0.00984097272157669
    grad:  1.0 2.0 tensor([0.2600, 0.2600, 0.2600])
    grad:  2.0 4.0 tensor([-1.9864, -0.9932, -0.4966])
    grad:  3.0 6.0 tensor([1.7709, 0.5903, 0.1968])
progress:  48 0.009679674170911312
    grad:  1.0 2.0 tensor([0.2628, 0.2628, 0.2628])
    grad:  2.0 4.0 tensor([-1.9762, -0.9881, -0.4940])
    grad:  3.0 6.0 tensor([1.7568, 0.5856, 0.1952])
progress:  49 0.009525291621685028
    grad:  1.0 2.0 tensor([0.2655, 0.2655, 0.2655])
    grad:  2.0 4.0 tensor([-1.9663, -0.9832, -0.4916])
    grad:  3.0 6.0 tensor([1.7431, 0.5810, 0.1937])
progress:  50 0.00937769003212452
    grad:  1.0 2.0 tensor([0.2680, 0.2680, 0.2680])
    grad:  2.0 4.0 tensor([-1.9568, -0.9784, -0.4892])
    grad:  3.0 6.0 tensor([1.7299, 0.5766, 0.1922])
progress:  51 0.009236648678779602
    grad:  1.0 2.0 tensor([0.2704, 0.2704, 0.2704])
    grad:  2.0 4.0 tensor([-1.9476, -0.9738, -0.4869])
    grad:  3.0 6.0 tensor([1.7172, 0.5724, 0.1908])
progress:  52 0.00910158734768629
    grad:  1.0 2.0 tensor([0.2728, 0.2728, 0.2728])
    grad:  2.0 4.0 tensor([-1.9387, -0.9694, -0.4847])
    grad:  3.0 6.0 tensor([1.7050, 0.5683, 0.1894])
progress:  53 0.00897257961332798
    grad:  1.0 2.0 tensor([0.2750, 0.2750, 0.2750])
    grad:  2.0 4.0 tensor([-1.9301, -0.9651, -0.4825])
    grad:  3.0 6.0 tensor([1.6932, 0.5644, 0.1881])
progress:  54 0.008848887868225574
    grad:  1.0 2.0 tensor([0.2771, 0.2771, 0.2771])
    grad:  2.0 4.0 tensor([-1.9219, -0.9609, -0.4805])
    grad:  3.0 6.0 tensor([1.6819, 0.5606, 0.1869])
progress:  55 0.008730598725378513
    grad:  1.0 2.0 tensor([0.2792, 0.2792, 0.2792])
    grad:  2.0 4.0 tensor([-1.9139, -0.9569, -0.4785])
    grad:  3.0 6.0 tensor([1.6709, 0.5570, 0.1857])
progress:  56 0.00861735362559557
    grad:  1.0 2.0 tensor([0.2811, 0.2811, 0.2811])
    grad:  2.0 4.0 tensor([-1.9062, -0.9531, -0.4765])
    grad:  3.0 6.0 tensor([1.6604, 0.5535, 0.1845])
progress:  57 0.008508718572556973
    grad:  1.0 2.0 tensor([0.2830, 0.2830, 0.2830])
    grad:  2.0 4.0 tensor([-1.8987, -0.9493, -0.4747])
    grad:  3.0 6.0 tensor([1.6502, 0.5501, 0.1834])
progress:  58 0.008404706604778767
    grad:  1.0 2.0 tensor([0.2848, 0.2848, 0.2848])
    grad:  2.0 4.0 tensor([-1.8915, -0.9457, -0.4729])
    grad:  3.0 6.0 tensor([1.6404, 0.5468, 0.1823])
progress:  59 0.008305158466100693
    grad:  1.0 2.0 tensor([0.2865, 0.2865, 0.2865])
    grad:  2.0 4.0 tensor([-1.8845, -0.9423, -0.4711])
    grad:  3.0 6.0 tensor([1.6309, 0.5436, 0.1812])
progress:  60 0.00820931326597929
    grad:  1.0 2.0 tensor([0.2882, 0.2882, 0.2882])
    grad:  2.0 4.0 tensor([-1.8778, -0.9389, -0.4694])
    grad:  3.0 6.0 tensor([1.6218, 0.5406, 0.1802])
progress:  61 0.008117804303765297
    grad:  1.0 2.0 tensor([0.2898, 0.2898, 0.2898])
    grad:  2.0 4.0 tensor([-1.8713, -0.9356, -0.4678])
    grad:  3.0 6.0 tensor([1.6130, 0.5377, 0.1792])
progress:  62 0.008029798977077007
    grad:  1.0 2.0 tensor([0.2913, 0.2913, 0.2913])
    grad:  2.0 4.0 tensor([-1.8650, -0.9325, -0.4662])
    grad:  3.0 6.0 tensor([1.6045, 0.5348, 0.1783])
progress:  63 0.007945418357849121
    grad:  1.0 2.0 tensor([0.2927, 0.2927, 0.2927])
    grad:  2.0 4.0 tensor([-1.8589, -0.9294, -0.4647])
    grad:  3.0 6.0 tensor([1.5962, 0.5321, 0.1774])
progress:  64 0.007864190265536308
    grad:  1.0 2.0 tensor([0.2941, 0.2941, 0.2941])
    grad:  2.0 4.0 tensor([-1.8530, -0.9265, -0.4632])
    grad:  3.0 6.0 tensor([1.5884, 0.5295, 0.1765])
progress:  65 0.007786744274199009
    grad:  1.0 2.0 tensor([0.2954, 0.2954, 0.2954])
    grad:  2.0 4.0 tensor([-1.8473, -0.9236, -0.4618])
    grad:  3.0 6.0 tensor([1.5807, 0.5269, 0.1756])
progress:  66 0.007711691781878471
    grad:  1.0 2.0 tensor([0.2967, 0.2967, 0.2967])
    grad:  2.0 4.0 tensor([-1.8417, -0.9209, -0.4604])
    grad:  3.0 6.0 tensor([1.5733, 0.5244, 0.1748])
progress:  67 0.007640169933438301
    grad:  1.0 2.0 tensor([0.2979, 0.2979, 0.2979])
    grad:  2.0 4.0 tensor([-1.8364, -0.9182, -0.4591])
    grad:  3.0 6.0 tensor([1.5662, 0.5221, 0.1740])
progress:  68 0.007570972666144371
    grad:  1.0 2.0 tensor([0.2991, 0.2991, 0.2991])
    grad:  2.0 4.0 tensor([-1.8312, -0.9156, -0.4578])
    grad:  3.0 6.0 tensor([1.5593, 0.5198, 0.1733])
progress:  69 0.007504733745008707
    grad:  1.0 2.0 tensor([0.3002, 0.3002, 0.3002])
    grad:  2.0 4.0 tensor([-1.8262, -0.9131, -0.4566])
    grad:  3.0 6.0 tensor([1.5527, 0.5176, 0.1725])
progress:  70 0.007440924644470215
    grad:  1.0 2.0 tensor([0.3012, 0.3012, 0.3012])
    grad:  2.0 4.0 tensor([-1.8214, -0.9107, -0.4553])
    grad:  3.0 6.0 tensor([1.5463, 0.5154, 0.1718])
progress:  71 0.007379599846899509
    grad:  1.0 2.0 tensor([0.3022, 0.3022, 0.3022])
    grad:  2.0 4.0 tensor([-1.8167, -0.9083, -0.4542])
    grad:  3.0 6.0 tensor([1.5401, 0.5134, 0.1711])
progress:  72 0.007320486940443516
    grad:  1.0 2.0 tensor([0.3032, 0.3032, 0.3032])
    grad:  2.0 4.0 tensor([-1.8121, -0.9060, -0.4530])
    grad:  3.0 6.0 tensor([1.5341, 0.5114, 0.1705])
progress:  73 0.007263725157827139
    grad:  1.0 2.0 tensor([0.3041, 0.3041, 0.3041])
    grad:  2.0 4.0 tensor([-1.8077, -0.9038, -0.4519])
    grad:  3.0 6.0 tensor([1.5283, 0.5094, 0.1698])
progress:  74 0.007209045812487602
    grad:  1.0 2.0 tensor([0.3050, 0.3050, 0.3050])
    grad:  2.0 4.0 tensor([-1.8034, -0.9017, -0.4508])
    grad:  3.0 6.0 tensor([1.5227, 0.5076, 0.1692])
progress:  75 0.007156429346650839
    grad:  1.0 2.0 tensor([0.3058, 0.3058, 0.3058])
    grad:  2.0 4.0 tensor([-1.7992, -0.8996, -0.4498])
    grad:  3.0 6.0 tensor([1.5173, 0.5058, 0.1686])
progress:  76 0.007105532102286816
    grad:  1.0 2.0 tensor([0.3066, 0.3066, 0.3066])
    grad:  2.0 4.0 tensor([-1.7952, -0.8976, -0.4488])
    grad:  3.0 6.0 tensor([1.5121, 0.5040, 0.1680])
progress:  77 0.00705681974068284
    grad:  1.0 2.0 tensor([0.3073, 0.3073, 0.3073])
    grad:  2.0 4.0 tensor([-1.7913, -0.8956, -0.4478])
    grad:  3.0 6.0 tensor([1.5070, 0.5023, 0.1674])
progress:  78 0.007009552326053381
    grad:  1.0 2.0 tensor([0.3081, 0.3081, 0.3081])
    grad:  2.0 4.0 tensor([-1.7875, -0.8937, -0.4469])
    grad:  3.0 6.0 tensor([1.5021, 0.5007, 0.1669])
progress:  79 0.006964194122701883
    grad:  1.0 2.0 tensor([0.3087, 0.3087, 0.3087])
    grad:  2.0 4.0 tensor([-1.7838, -0.8919, -0.4459])
    grad:  3.0 6.0 tensor([1.4974, 0.4991, 0.1664])
progress:  80 0.006920332089066505
    grad:  1.0 2.0 tensor([0.3094, 0.3094, 0.3094])
    grad:  2.0 4.0 tensor([-1.7802, -0.8901, -0.4450])
    grad:  3.0 6.0 tensor([1.4928, 0.4976, 0.1659])
progress:  81 0.006878111511468887
    grad:  1.0 2.0 tensor([0.3100, 0.3100, 0.3100])
    grad:  2.0 4.0 tensor([-1.7767, -0.8883, -0.4442])
    grad:  3.0 6.0 tensor([1.4884, 0.4961, 0.1654])
progress:  82 0.006837360095232725
    grad:  1.0 2.0 tensor([0.3106, 0.3106, 0.3106])
    grad:  2.0 4.0 tensor([-1.7733, -0.8867, -0.4433])
    grad:  3.0 6.0 tensor([1.4841, 0.4947, 0.1649])
progress:  83 0.006797831039875746
    grad:  1.0 2.0 tensor([0.3111, 0.3111, 0.3111])
    grad:  2.0 4.0 tensor([-1.7700, -0.8850, -0.4425])
    grad:  3.0 6.0 tensor([1.4800, 0.4933, 0.1644])
progress:  84 0.006760062649846077
    grad:  1.0 2.0 tensor([0.3117, 0.3117, 0.3117])
    grad:  2.0 4.0 tensor([-1.7668, -0.8834, -0.4417])
    grad:  3.0 6.0 tensor([1.4759, 0.4920, 0.1640])
progress:  85 0.006723103579133749
    grad:  1.0 2.0 tensor([0.3122, 0.3122, 0.3122])
    grad:  2.0 4.0 tensor([-1.7637, -0.8818, -0.4409])
    grad:  3.0 6.0 tensor([1.4720, 0.4907, 0.1636])
progress:  86 0.00668772729113698
    grad:  1.0 2.0 tensor([0.3127, 0.3127, 0.3127])
    grad:  2.0 4.0 tensor([-1.7607, -0.8803, -0.4402])
    grad:  3.0 6.0 tensor([1.4682, 0.4894, 0.1631])
progress:  87 0.006653300020843744
    grad:  1.0 2.0 tensor([0.3131, 0.3131, 0.3131])
    grad:  2.0 4.0 tensor([-1.7577, -0.8789, -0.4394])
    grad:  3.0 6.0 tensor([1.4646, 0.4882, 0.1627])
progress:  88 0.0066203586757183075
    grad:  1.0 2.0 tensor([0.3135, 0.3135, 0.3135])
    grad:  2.0 4.0 tensor([-1.7548, -0.8774, -0.4387])
    grad:  3.0 6.0 tensor([1.4610, 0.4870, 0.1623])
progress:  89 0.0065881176851689816
    grad:  1.0 2.0 tensor([0.3139, 0.3139, 0.3139])
    grad:  2.0 4.0 tensor([-1.7520, -0.8760, -0.4380])
    grad:  3.0 6.0 tensor([1.4576, 0.4859, 0.1620])
progress:  90 0.0065572685562074184
    grad:  1.0 2.0 tensor([0.3143, 0.3143, 0.3143])
    grad:  2.0 4.0 tensor([-1.7493, -0.8747, -0.4373])
    grad:  3.0 6.0 tensor([1.4542, 0.4847, 0.1616])
progress:  91 0.0065271081402897835
    grad:  1.0 2.0 tensor([0.3147, 0.3147, 0.3147])
    grad:  2.0 4.0 tensor([-1.7466, -0.8733, -0.4367])
    grad:  3.0 6.0 tensor([1.4510, 0.4837, 0.1612])
progress:  92 0.00649801641702652
    grad:  1.0 2.0 tensor([0.3150, 0.3150, 0.3150])
    grad:  2.0 4.0 tensor([-1.7441, -0.8720, -0.4360])
    grad:  3.0 6.0 tensor([1.4478, 0.4826, 0.1609])
progress:  93 0.0064699104987084866
    grad:  1.0 2.0 tensor([0.3153, 0.3153, 0.3153])
    grad:  2.0 4.0 tensor([-1.7415, -0.8708, -0.4354])
    grad:  3.0 6.0 tensor([1.4448, 0.4816, 0.1605])
progress:  94 0.006442630663514137
    grad:  1.0 2.0 tensor([0.3156, 0.3156, 0.3156])
    grad:  2.0 4.0 tensor([-1.7391, -0.8695, -0.4348])
    grad:  3.0 6.0 tensor([1.4418, 0.4806, 0.1602])
progress:  95 0.006416172254830599
    grad:  1.0 2.0 tensor([0.3159, 0.3159, 0.3159])
    grad:  2.0 4.0 tensor([-1.7366, -0.8683, -0.4342])
    grad:  3.0 6.0 tensor([1.4389, 0.4796, 0.1599])
progress:  96 0.006390606984496117
    grad:  1.0 2.0 tensor([0.3161, 0.3161, 0.3161])
    grad:  2.0 4.0 tensor([-1.7343, -0.8671, -0.4336])
    grad:  3.0 6.0 tensor([1.4361, 0.4787, 0.1596])
progress:  97 0.0063657015562057495
    grad:  1.0 2.0 tensor([0.3164, 0.3164, 0.3164])
    grad:  2.0 4.0 tensor([-1.7320, -0.8660, -0.4330])
    grad:  3.0 6.0 tensor([1.4334, 0.4778, 0.1593])
progress:  98 0.0063416799530386925
    grad:  1.0 2.0 tensor([0.3166, 0.3166, 0.3166])
    grad:  2.0 4.0 tensor([-1.7297, -0.8649, -0.4324])
    grad:  3.0 6.0 tensor([1.4308, 0.4769, 0.1590])
progress:  99 0.00631808303296566
predict (after tranining)  4 8.544171333312988

损失值随着迭代次数的增加呈递减趋势,如下图所示:

可以看出:x=4时的预测值约为8.5,与真实值8有所差距,可通过提高迭代次数或者调整学习率、初始参数等方法来减小差距。

参考文献:

  • [1] https://www.bilibili.com/video/av93365242

到此这篇关于PyTorch反向传播的文章就介绍到这了,更多相关PyTorch反向传播内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • PyTorch: 梯度下降及反向传播的实例详解

    线性模型 线性模型介绍 线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集.训练集包括(x,y),x为特征,y为目标.如下图: 将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w.当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数: 线性模型例子 下面通过一个例子可以观察不同权重(w)对模型损失函数的影响. #author:yuquanle #data:2018.2.5 #Study of Linear

  • Pytorch反向传播中的细节-计算梯度时的默认累加操作

    Pytorch反向传播计算梯度默认累加 今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决: pytorch实现线性回归 先附上试验代码来感受一下: torch.manual_seed(6) lr = 0.01 # 学习率 result = [] # 创建训练数据 x = torch.rand(20, 1

  • pytorch 多个反向传播操作

    之前我的一篇文章pytorch 计算图以及backward,讲了一些pytorch中基本的反向传播,理清了梯度是如何计算以及下降的,建议先看懂那个,然后再看这个. 从一个错误说起: RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed 在深度学习中,有些场景需要进行两次反向,比如Gan网络,需要对D进行一次,还要对G进行一次,很多人都会遇到

  • pytorch loss反向传播出错的解决方案

    今天在使用pytorch进行训练,在运行 loss.backward() 误差反向传播时出错 : RuntimeError: grad can be implicitly created only for scalar outputs File "train.py", line 143, in train loss.backward() File "/usr/local/lib/python3.6/dist-packages/torch/tensor.py", li

  • pytorch .detach() .detach_() 和 .data用于切断反向传播的实现

    当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整:或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播 1   detach()[source] 返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad. 即使之后重新将它的requires_grad

  • pytorch损失反向传播后梯度为none的问题

    错误代码:输出grad为none a = torch.ones((2, 2), requires_grad=True).to(device) b = a.sum() b.backward() print(a.grad) 由于.to(device)是一次操作,此时的a已经不是叶子节点了 修改后的代码为: a = torch.ones((2, 2), requires_grad=True) c = a.to(device) b = c.sum() b.backward() print(a.grad)

  • pytorch中的自定义反向传播,求导实例

    pytorch中自定义backward()函数.在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包. 那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢.下面的代码展示了这个功能` import torch import numpy as np from PIL import Image from torch.autograd import gradcheck class Bicu

  • PyTorch梯度下降反向传播

    前言: 反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向 如题: 意思是利用这个二次模型来预测数据,减小损失函数(MSE)的值. 代码如下: import torch import matplo

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式

  • Tensorflow 卷积的梯度反向传播过程

    一. valid卷积的梯度 我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导):第二种情况,在已知张量的情况下,对未知卷积核求导(即对卷积核中每一个变量求导) 1.已知卷积核,对未知张量求导 我们用一个简单的例子理解valid卷积的梯度反向传播.假设有一个3x3的未知张量x,以及已知的2x2的卷积核K Tensorflow提供函数tf.nn.conv2d_backprop_input实现了valid卷积中对未知变量的求导,以

随机推荐