Python echarts实现数据可视化实例详解

目录
  • 1.概述
  • 2.安装
  • 3.数据可视化代码
    • 3.1柱状图
    • 3.2折线图
    • 3.3饼图
  • 总结

1.概述

pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑。

2.安装

python3环境下的安装:

pip3 install pyecharts

3.数据可视化代码

3.1 柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), stack="stack1")
    .add_yaxis("商家B", Faker.values(), stack="stack1")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
    .render("bar_stack0.html")
)

执行上述代码,会在相对目录生成mycharts.html文件,通过页面打开。

3.2 折线图

import pyecharts.options as opts
from pyecharts.charts import Line
"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://echarts.apache.org/examples/editor.html?c=line-smooth
目前无法实现的功能:
暂无
"""
x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]
(
    Line()
    .set_global_opts(
        tooltip_opts=opts.TooltipOpts(is_show=False),
        xaxis_opts=opts.AxisOpts(type_="category"),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
    )
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="",
        y_axis=y_data,
        symbol="emptyCircle",
        is_symbol_show=True,
        is_smooth=True,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .render("smoothed_line_chart.html")
)

3.3 饼图

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
c = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(Faker.choose(), Faker.values())],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Pie-Radius"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_radius.html")
)

官网:Document​

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • python用pyecharts实现地图数据可视化

    有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较.但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现.在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制. 我们先来看看最终效果: 关于绘图数据 基于时间和截面两个维度,可把数据分为截面数据.时间序列及面板数据.在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据.因此,

  • Python数据可视化Pyecharts库实现桑葚图效果

    目录 基本思路我总结大概有三步: 1. 先申明使用sankey 2. 使用add 添加对sankey图的配置信息 3. 最后render生成html文件展示 首先介绍一下什么是桑葚图? 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图. 它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源.材料成分.金融等数据的可视化分析. 因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"

  • python数据可视化Pyecharts库sankey修改桑葚图颜色

    目录 在上一篇关于绘画Sankey桑葚图的文章里,已经介绍过大致的过程,本文主要解决如何自定义/修改 所想要的颜色, 如下所示一个桑葚图: 想要修改Phenotype1, 使用itemStyle中的属性color,给每个结点添加一个字典属性,设置所需要的颜色即可. nodes = [{'name':'Phenotype 1','itemStyle':{'color':"#FA8072"}}, {'name':'Phenotype 2','itemStyle':{'color':&quo

  • Python数据可视化之基于pyecharts实现的地理图表的绘制

    一.例子:百度迁徙 百度地图春节人口迁徙大数据(简称百度迁徙),是百度在2014年春运期间推出的一项技术项目.百度迁徙利用大数据,对其拥有的LBS(基于地理位置的服务)大数据进行计算分析,采用的可视化呈现方式,动态.即时.直观地展现中国春节前后人口大迁徙的轨迹与特征. 网址:https://qianxi.baidu.com/2021/ 二.基础语法介绍 语法 说明 from pyecharts.charts import Geo 导入地图库 Geo() Pyecharts地理图表绘制 .add_

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

  • Python数据可视化Pyecharts库的使用教程

    目录 一.Pyecharts 概述 1.1 Pyecharts 特性 1.2 Pyecharts 入门案例 二.Pyecharts 配置项 2.1 全局配置项 2.2 系列配置项 三.Pyecharts 的总结 一.Pyecharts 概述 Pyechart 是一个用于生成 Echarts 图表(Echarts 是基于 Javascript 的开源可视化图表库)的 Python 第三方库. 1.1 Pyecharts 特性 根据官方文档的介绍,Pyecharts 的特性如下: 1.简洁的 API

  • Python echarts实现数据可视化实例详解

    目录 1.概述 2.安装 3.数据可视化代码 3.1柱状图 3.2折线图 3.3饼图 总结 1.概述 pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑. 2.安装 python3环境下的安装: pip3 install pyecharts 3.数据可视化代码 3.1 柱状图 from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker

  • Python疫情确诊折线图实现数据可视化实例详解

    目录 案例描述 实现步骤 一.导入模块 二.读取文件内容 三.json转换python 四.获取需要用到的数据 五.生成图表 六.关闭文件 案例描述 根据可参考数据,实现对疫情确诊人数数据的可视化. 利用json转换工具,将数据格式化,需要取出下面两部分的内容. 可视化效果图: 实现步骤 一.导入模块 导入可能用到的模块 import json from pyecharts.charts import Line 二.读取文件内容 打开相应的文件,使用变量us_data保存文件的内容 f_us =

  • 使用antv替代Echarts实现数据可视化图表详解

    目录 前言 面积图 常用参数文档 图表 度量 scale 提示 tooltip 坐标系 axis chart.line(options) chart.area(options) geom.position() geom.color() geom.shape() 柱状图 数据标签 label chart.coordinate() chart.interval(options) 地图 地图容器配置项 map 地图等级 viewLevel 小结 前言 技术永无止尽,多看看不同风景 周一,还在愉快的为移

  • Python pyecharts数据可视化实例详解

    目录 一.数据可视化 1.pyecharts介绍 2.初入了解 (1).快速上手 (2).简单的配置项介绍 3.案例实战 (1).柱状图Bar (2).地图Map (3).饼图Pie (4).折线图Line (5).组合图表 二.案例数据获取 总结 一.数据可视化 1.pyecharts介绍 官方网址:https://pyecharts.org/#/zh-cn/intro 概况: Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,使用JavaScript实现的.

  • python序列化与数据持久化实例详解

    本文实例讲述了python序列化与数据持久化.分享给大家供大家参考,具体如下: 数据持久化的方式有: 1.普通文件无格式写入:将数据直接写入到文件中 2.普通序列化写入:json,pickle 3.DBM方式:shelve,dbm 相关内容: json pickle shelve dbm json: 介绍: 按照指定格式[比如格式是字典,那么文件中就是字典]将数据明文写入到文件中,类型是bytes的,比如"中文"就会变成Unicode编码 用法: 首先要导入模块import json

  • Python中zip()函数的解释和可视化(实例详解)

    zip()的作用 先看一下语法: zip(iter1 [,iter2 [...]]) -> zip object Python的内置help()模块提供了一个简短但又有些令人困惑的解释: 返回一个元组迭代器,其中第i个元组包含每个参数序列或可迭代对象中的第i个元素.当最短的可迭代输入耗尽时,迭代器将停止.使用单个可迭代参数,它将返回1元组的迭代器.没有参数,它将返回一个空的迭代器. 与往常一样,当您精通更一般的计算机科学和Python概念时,此模块非常有用.但是,对于初学者来说,这段话只会引发更

  • python爬取天气数据的实例详解

    就在前几天还是二十多度的舒适温度,今天一下子就变成了个位数,小编已经感受到冬天寒风的无情了.之前对获取天气都是数据上的搜集,做成了一个数据表后,对温度变化的感知并不直观.那么,我们能不能用python中的方法做一个天气数据分析的图形,帮助我们更直接的看出天气变化呢? 使用pygal绘图,使用该模块前需先安装pip install pygal,然后导入import pygal bar = pygal.Line() # 创建折线图 bar.add('最低气温', lows) #添加两线的数据序列 b

  • Python 处理数据的实例详解

    Python 处理数据的实例详解 最近用python(3.2的版本)写了根据特定规则,处理数据的一个小程序,用到了一些python常用的基础知识,在此总结一下: 1,python读文件 2,python写文件 3,python的流程控制 4,python的for循环 5,python的集合,或字符串里判断是否存在某个元素 6,python的逻辑或,逻辑与 7,python的正则过滤 8,python的字符串忽略空格,和以某个字符串开头和按某个字符拆分成list python的打开文件的模式: 关

  • 对python 操作solr索引数据的实例详解

    测试代码1: def test(self): data = {"add": {"doc": {"id": "100001", "*字段名*": u"我是一个大好人"}}} params = {"boost": 1.0, "overwrite": "true", "commitWithin": 1000} ur

  • 对python requests发送json格式数据的实例详解

    requests是常用的请求库,不管是写爬虫脚本,还是测试接口返回数据等.都是很简单常用的工具. 这里就记录一下如何用requests发送json格式的数据,因为一般我们post参数,都是直接post,没管post的数据的类型,它默认有一个类型的,貌似是 application/x-www-form-urlencoded. 但是,我们写程序的时候,最常用的接口post数据的格式是json格式.当我们需要post json格式数据的时候,怎么办呢,只需要添加修改两处小地方即可. 详见如下代码: i

随机推荐