基于python神经卷积网络的人脸识别

本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下

1.人脸识别整体设计方案

客_服交互流程图:

2.服务端代码展示

sk = socket.socket()
# s.bind(address) 将套接字绑定到地址。在AF_INET下,以元组(host,port)的形式表示地址。
sk.bind(("172.29.25.11",8007))
# 开始监听传入连接。
sk.listen(True) 

while True:
 for i in range(100):
  # 接受连接并返回(conn,address),conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。
  conn,address = sk.accept() 

  # 建立图片存储路径
  path = str(i+1) + '.jpg' 

  # 接收图片大小(字节数)
  size = conn.recv(1024)
  size_str = str(size,encoding="utf-8")
  size_str = size_str[2 :]
  file_size = int(size_str) 

  # 响应接收完成
  conn.sendall(bytes('finish', encoding="utf-8")) 

  # 已经接收数据大小 has_size
  has_size = 0
  # 创建图片并写入数据
  f = open(path,"wb")
  while True:
   # 获取
   if file_size == has_size:
    break
   date = conn.recv(1024)
   f.write(date)
   has_size += len(date)
  f.close() 

  # 图片缩放
  resize(path)
  # cut_img(path):图片裁剪成功返回True;失败返回False
  if cut_img(path):
   yuchuli()
   result = test('test.jpg')
   conn.sendall(bytes(result,encoding="utf-8"))
  else:
   print('falue')
   conn.sendall(bytes('人眼检测失败,请保持图片眼睛清晰',encoding="utf-8"))
  conn.close() 

3.图片预处理

1)图片缩放

# 根据图片大小等比例缩放图片
def resize(path):
 image=cv2.imread(path,0)
 row,col = image.shape
 if row >= 2500:
  x,y = int(row/5),int(col/5)
 elif row >= 2000:
  x,y = int(row/4),int(col/4)
 elif row >= 1500:
  x,y = int(row/3),int(col/3)
 elif row >= 1000:
  x,y = int(row/2),int(col/2)
 else:
  x,y = row,col
 # 缩放函数
 res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC)
 cv2.imwrite(path,res)

2)直方图均衡化和中值滤波

# 直方图均衡化
eq = cv2.equalizeHist(img)
# 中值滤波
lbimg=cv2.medianBlur(eq,3) 

3)人眼检测

# -*- coding: utf-8 -*-
# 检测人眼,返回眼睛数据 

import numpy as np
import cv2 

def eye_test(path):
 # 待检测的人脸路径
 imagepath = path 

 # 获取训练好的人脸参数
 eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') 

 # 读取图片
 img = cv2.imread(imagepath)
 # 转为灰度图像
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

 # 检测并获取人眼数据
 eyeglasses = eyeglasses_cascade.detectMultiScale(gray)
 # 人眼数为2时返回左右眼位置数据
 if len(eyeglasses) == 2:
  num = 0
  for (e_gx,e_gy,e_gw,e_gh) in eyeglasses:
   cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2)
   if num == 0:
    x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2)
   else:
    x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2)
   num += 1
  print('eye_test')
  return x1,y1,x2,y2
 else:
  return False 

4)人眼对齐并裁剪

# -*- coding: utf-8 -*-
# 人眼对齐并裁剪 

# 参数含义:
# CropFace(image, eye_left, eye_right, offset_pct, dest_sz)
# eye_left is the position of the left eye
# eye_right is the position of the right eye
# 比例的含义为:要保留的图像靠近眼镜的百分比,
# offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction)
# 最后保留的图像的大小。
# dest_sz is the size of the output image
#
import sys,math
from PIL import Image
from eye_test import eye_test 

 # 计算两个坐标的距离
def Distance(p1,p2):
 dx = p2[0]- p1[0]
 dy = p2[1]- p1[1]
 return math.sqrt(dx*dx+dy*dy) 

 # 根据参数,求仿射变换矩阵和变换后的图像。
def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC):
 if (scale is None)and (center is None):
  return image.rotate(angle=angle, resample=resample)
 nx,ny = x,y = center
 sx=sy=1.0
 if new_center:
  (nx,ny) = new_center
 if scale:
  (sx,sy) = (scale, scale)
 cosine = math.cos(angle)
 sine = math.sin(angle)
 a = cosine/sx
 b = sine/sx
 c = x-nx*a-ny*b
 d =-sine/sy
 e = cosine/sy
 f = y-nx*d-ny*e
 return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) 

 # 根据所给的人脸图像,眼睛坐标位置,偏移比例,输出的大小,来进行裁剪。
def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)):
 # calculate offsets in original image 计算在原始图像上的偏移。
 offset_h = math.floor(float(offset_pct[0])*dest_sz[0])
 offset_v = math.floor(float(offset_pct[1])*dest_sz[1])
 # get the direction 计算眼睛的方向。
 eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1])
 # calc rotation angle in radians 计算旋转的方向弧度。
 rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0]))
 # distance between them # 计算两眼之间的距离。
 dist = Distance(eye_left, eye_right)
 # calculate the reference eye-width 计算最后输出的图像两只眼睛之间的距离。
 reference = dest_sz[0]-2.0*offset_h
 # scale factor # 计算尺度因子。
 scale =float(dist)/float(reference)
 # rotate original around the left eye # 原图像绕着左眼的坐标旋转。
 image = ScaleRotateTranslate(image, center=eye_left, angle=rotation)
 # crop the rotated image # 剪切
 crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起点
 crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小
 image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1])))
 # resize it 重置大小
 image = image.resize(dest_sz, Image.ANTIALIAS)
 return image 

def cut_img(path):
 image = Image.open(path) 

 # 人眼识别成功返回True;否则,返回False
 if eye_test(path):
  print('cut_img')
  # 获取人眼数据
  leftx,lefty,rightx,righty = eye_test(path) 

  # 确定左眼和右眼位置
  if leftx > rightx:
   temp_x,temp_y = leftx,lefty
   leftx,lefty = rightx,righty
   rightx,righty = temp_x,temp_y 

  # 进行人眼对齐并保存截图
  CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg')
  return True
 else:
  print('falue')
  return False 

4.用神经卷积网络训练数据

# -*- coding: utf-8 -*- 

from numpy import *
import cv2
import tensorflow as tf 

# 图片大小
TYPE = 112*92
# 训练人数
PEOPLENUM = 42
# 每人训练图片数
TRAINNUM = 15 #( train_face_num )
# 单人训练人数加测试人数
EACH = 21 #( test_face_num + train_face_num ) 

# 2维=>1维
def img2vector1(filename):
 img = cv2.imread(filename,0)
 row,col = img.shape
 vector1 = zeros((1,row*col))
 vector1 = reshape(img,(1,row*col))
 return vector1 

# 获取人脸数据
def ReadData(k):
 path = 'face_flip/'
 train_face = zeros((PEOPLENUM*k,TYPE),float32)
 train_face_num = zeros((PEOPLENUM*k,PEOPLENUM))
 test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32)
 test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM)) 

 # 建立42个人的训练人脸集和测试人脸集
 for i in range(PEOPLENUM):
  # 单前获取人
  people_num = i + 1
  for j in range(k):
   #获取图片路径
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg'
   #2维=>1维
   img = img2vector1(filename) 

   #train_face:每一行为一幅图的数据;train_face_num:储存每幅图片属于哪个人
   train_face[i*k+j,:] = img/255
   train_face_num[i*k+j,people_num-1] = 1 

  for j in range(k,EACH):
   #获取图片路径
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 

   #2维=>1维
   img = img2vector1(filename) 

   # test_face:每一行为一幅图的数据;test_face_num:储存每幅图片属于哪个人
   test_face[i*(EACH-k)+(j-k),:] = img/255
   test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1 

 return train_face,train_face_num,test_face,test_face_num 

# 获取训练和测试人脸集与对应lable
train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM) 

# 计算测试集成功率
def compute_accuracy(v_xs, v_ys):
 global prediction
 y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
 correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
 return result 

# 神经元权重
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial) 

# 神经元偏置
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial) 

# 卷积
def conv2d(x, W):
 # stride [1, x_movement, y_movement, 1]
 # Must have strides[0] = strides[3] = 1
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

# 最大池化,x,y步进值均为2
def max_pool_2x2(x):
 # stride [1, x_movement, y_movement, 1]
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 112, 92, 1])
# print(x_image.shape) # [n_samples, 112,92,1] 

# 第一层卷积层
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 

# 第二层卷积层
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 

# 第一层神经网络全连接层
W_fc1 = weight_variable([28*23*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 

# 第二层神经网络全连接层
W_fc2 = weight_variable([1024, PEOPLENUM])
b_fc2 = bias_variable([PEOPLENUM])
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 

# 交叉熵损失函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys))
regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2)
# 将正则项加入损失函数
cost += 5e-4 * regularizers
# 优化器优化误差值
train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) 

sess = tf.Session()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess.run(init) 

# 训练1000次,每50次输出测试集测试结果
for i in range(1000):
 sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5})
 if i % 50 == 0:
  print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1}))
  print(compute_accuracy(test_face,test_face_num))
# 保存训练数据
save_path = saver.save(sess,'my_data/save_net.ckpt') 

5.用神经卷积网络测试数据

# -*- coding: utf-8 -*-
# 两层神经卷积网络加两层全连接神经网络 

from numpy import *
import cv2
import tensorflow as tf 

# 神经网络最终输出个数
PEOPLENUM = 42 

# 2维=>1维
def img2vector1(img):
 row,col = img.shape
 vector1 = zeros((1,row*col),float32)
 vector1 = reshape(img,(1,row*col))
 return vector1 

# 神经元权重
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial) 

# 神经元偏置
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial) 

# 卷积
def conv2d(x, W):
 # stride [1, x_movement, y_movement, 1]
 # Must have strides[0] = strides[3] = 1
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

# 最大池化,x,y步进值均为2
def max_pool_2x2(x):
 # stride [1, x_movement, y_movement, 1]
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 112, 92, 1])
# print(x_image.shape) # [n_samples, 112,92,1] 

# 第一层卷积层
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 

# 第二层卷积层
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 

# 第一层神经网络全连接层
W_fc1 = weight_variable([28*23*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 

# 第二层神经网络全连接层
W_fc2 = weight_variable([1024, PEOPLENUM])
b_fc2 = bias_variable([PEOPLENUM])
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 

sess = tf.Session()
init = tf.global_variables_initializer() 

# 下载训练数据
saver = tf.train.Saver()
saver.restore(sess,'my_data/save_net.ckpt') 

# 返回签到人名
def find_people(people_num):
 if people_num == 41:
  return '任童霖'
 elif people_num == 42:
  return 'LZT'
 else:
  return 'another people' 

def test(path):
 # 获取处理后人脸
 img = cv2.imread(path,0)/255
 test_face = img2vector1(img)
 print('true_test') 

 # 计算输出比重最大的人及其所占比重
 prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1})
 prediction1 = prediction1[0].tolist()
 people_num = prediction1.index(max(prediction1))+1
 result = max(prediction1)/sum(prediction1)
 print(result,find_people(people_num)) 

 # 神经网络输出最大比重大于0.5则匹配成功
 if result > 0.50:
  # 保存签到数据
  qiandaobiao = load('save.npy')
  qiandaobiao[people_num-1] = 1
  save('save.npy',qiandaobiao) 

  # 返回 人名+签到成功
  print(find_people(people_num) + '已签到')
  result = find_people(people_num) + ' 签到成功'
 else:
  result = '签到失败'
 return result 

神经卷积网络入门简介

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 自适应线性神经网络Adaline的python实现详解

    自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器,采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Least mean square. 实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的. ''' Adaline classifier created on 2019.9.14 author: vince ''' import pandas import math import numpy

  • python构建深度神经网络(DNN)

    本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结. 代码主要包括两三部分: 1).数据调用和预处理 2).神经网络类构建和方法建立 3).代码测试文件 1)数据调用: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py # @Soft

  • Python实现的NN神经网络算法完整示例

    本文实例讲述了Python实现的NN神经网络算法.分享给大家供大家参考,具体如下: 参考自Github开源代码:https://github.com/dennybritz/nn-from-scratch 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) sklearn(人工智能包,生成数据使用) 计算过程 输入样例 none 代码实现 # -*- coding:utf-8 -*- #!python3 __author__ = 'Wsine' im

  • Python使用numpy实现BP神经网络

    本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x.BP神经网络的具体原理此处不再介绍. import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in i

  • Python实现的径向基(RBF)神经网络示例

    本文实例讲述了Python实现的径向基(RBF)神经网络.分享给大家供大家参考,具体如下: from numpy import array, append, vstack, transpose, reshape, \ dot, true_divide, mean, exp, sqrt, log, \ loadtxt, savetxt, zeros, frombuffer from numpy.linalg import norm, lstsq from multiprocessing impor

  • Python编程实现的简单神经网络算法示例

    本文实例讲述了Python编程实现的简单神经网络算法.分享给大家供大家参考,具体如下: python实现二层神经网络 包括输入层和输出层 # -*- coding:utf-8 -*- #! python2 import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x)) #input dataset x = np.

  • 神经网络(BP)算法Python实现及应用

    本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下 首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)

  • 基于python神经卷积网络的人脸识别

    本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下 1.人脸识别整体设计方案 客_服交互流程图: 2.服务端代码展示 sk = socket.socket() # s.bind(address) 将套接字绑定到地址.在AF_INET下,以元组(host,port)的形式表示地址. sk.bind(("172.29.25.11",8007)) # 开始监听传入连接. sk.listen(True) while True: for i in range(100): #

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • python调用百度API实现人脸识别

    1.代码 from aip import AipFace import cv2 import time import base64 from PIL import Image from io import BytesIO import pyttsx3 # """ 你的 APPID AK SK """ APP_ID = '1965####' API_KEY = 'YXL65ekIloykyjrT4kzc####' SECRET_KEY = 'lFi

  • python实现图片,视频人脸识别(dlib版)

    图片人脸检测 #coding=utf-8 import cv2 import dlib path = "img/meinv.png" img = cv2.imread(path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #人脸分类器 detector = dlib.get_frontal_face_detector() # 获取人脸检测器 predictor = dlib.shape_predictor( "C:\\Pytho

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • python实现图片,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • 使用卷积神经网络(CNN)做人脸识别的示例代码

    上回书说到了对人脸的检测,这回就开始正式进入人脸识别的阶段. 关于人脸识别,目前有很多经典的算法,当我大学时代,我的老师给我推荐的第一个算法是特征脸法,原理是先将图像灰度化,然后将图像每行首尾相接拉成一个列向量,接下来为了降低运算量要用PCA降维, 最后进分类器分类,可以使用KNN.SVM.神经网络等等,甚至可以用最简单的欧氏距离来度量每个列向量之间的相似度.OpenCV中也提供了相应的EigenFaceRecognizer库来实现该算法,除此之外还有FisherFaceRecognizer.L

  • python实现人脸识别经典算法(一) 特征脸法

    近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级. 操作环境:python2.7 第三方库:opencv for python.numpy 第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算

随机推荐