Pandas读取MySQL数据到DataFrame的方法
方法一:
#-*- coding:utf-8 -*- from sqlalchemy import create_engine class mysql_engine(): user='******' passwd='******' host='******' port = '******' db_name='******' engine = create_engine('mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user,passwd,host,port,db_name)) def get_data(sql): pg_enine=mysql_engine() try: with pg_enine.engine.connect() as con, con.begin(): df=pd.read_sql(sql,con)# 获取数据 con.close() except: df=None return df
方法二:
conn = MySQLdb.connect(host="******",user="******",passwd="******",db='******',port = ******,charset="utf8") sql = "select * from ****** limit 3" df = pd.read_sql(sql,conn,index_col="id") print df
pd 1.9以后的版本,除了sqllite,均需要通过sqlalchemy来设置
以上这篇Pandas读取MySQL数据到DataFrame的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pandas DataFrame数据的更改、插入新增的列和行的方法
一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['
-
Pandas DataFrame 取一行数据会得到Series的方法
Pandas DataFrame 取一行数据会得到Series的方法 如题,想要取如下dataframe的一行数据,以为得到的还是dataframe lista = [1, 3, 7,4,0] listb = [3, 3, 4,4,5] listc = [3, 3, 4,4,6] df1 = pd.DataFrame({'col1':lista,'col2':listb,'colb':listc}) print(df1) print(df1.loc[0,:]) print(type(df1.lo
-
python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现
相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用
-
Pandas:Series和DataFrame删除指定轴上数据的方法
如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一.drop方法:产生新对象 1.Series o = Series([1,3,4,7],index=['d','c','b','a']) print(o.drop(['d','b'])) c 3 a 7 dtype: int64 2.DataFrame data = {'水果':['苹果','梨','草莓'], '数量':[3,2,5
-
pandas DataFrame实现几列数据合并成为新的一列方法
问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country.province.city.county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方法: parent_teacher_data['address'] = parent_teacher_data['country']+parent_teacher_data['province']+parent_teacher_data['city']+parent_teacher_data['county'] 就
-
在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例
最近在工作中,遇到了数据合并.连接的问题,故整理如下,供需要者参考~ 一.concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接.与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果. concat(objs, axis=0, join='outer', join_axes=None, ignore_ind
-
pandas系列之DataFrame 行列数据筛选实例
一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,
-
Pandas读取MySQL数据到DataFrame的方法
方法一: #-*- coding:utf-8 -*- from sqlalchemy import create_engine class mysql_engine(): user='******' passwd='******' host='******' port = '******' db_name='******' engine = create_engine('mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user,passwd,ho
-
python3 pandas 读取MySQL数据和插入的实例
python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')
-
Python Pandas批量读取csv文件到dataframe的方法
PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i
-
Pandas读取行列数据最全方法
1.读取方法有按行(单行,多行连续,多行不连续),按列(单列,多列连续,多列不连续):部分不连续行不连续列:按位置(坐标),按字符(索引):按块(list):函数有 df.iloc(), df.loc(), df.iat(), df.at(), df.ix(). 2.转换为DF,赋值columns,index,修改添加数据,取行列索引 data = {'省份': ['北京', '上海', '广州', '深圳'], '年份': ['2017', '2018', '2019', '2020'], '
-
python批量读取txt文件为DataFrame的方法
我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作.比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢? 首先我们要用到glob模块,这个python内置的模块可以说是非常的好用. glob.glob('*.txt') 得到如下结果: all.txt是我最后得到的结果文件.可以见返回的是一个包含txt文件名称的列表,当然如果你的文件夹下面只有txt文件,那么你用os.listdir()可以得到一个一样的列表 然后
-
Python如何利用pandas读取csv数据并绘图
目录 如何利用pandas读取csv数据并绘图 绘制图像 展示结果 pandas画pearson相关系数热力图 pearson相关系数计算函数 如何利用pandas读取csv数据并绘图 导包,常用的numpy和pandas,绘图模块matplotlib, import matplotlib.pyplot as plt import pandas as pd import numpy as np fig = plt.figure() ax = fig.add_subplot(111) 读取csv文
-
详解PHP显示MySQL数据的三种方法
昨天的程序是这样的: <?php $link=mysql_connect("localhost","root","之前的管理员密码"); if(!$link) echo "没有连接成功!"; else echo "连接成功!"; mysql_select_db("infosystem", $link); $q = "SELECT * FROM info"
-
php使用PDO事务配合表格读取大量数据插入操作实现方法
本文实例讲述了php使用PDO事务配合表格读取大量数据插入操作实现方法.分享给大家供大家参考,具体如下: 在处理大量数据的时候,或者同时对几个表操作,而这几个表的操作要求,要么都成功,要么都失败的时候,就需要用到事物,而PDO中提供的事物,一般可以满足需求. 关于事务的具体讲解,http://www.jb51.net/article/105744.htm 本篇文章,只涉及一个小例子. 在向数据库导入一个表格的时候,难免excel文件中存在部分错误,如果用常规方法,将会导致,一部分插入了数据库,一
-
使用pandas读取csv文件的指定列方法
根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04
-
pandas抽取行列数据的几种方法
取行和列的几种常用方式: data[ 列名 ]: 取单列或多列,不能用连续方式取,也不能用于取行. data.列名: 只用于取单列,不能用于行. data[ i:j ]: 用起始行下标(i)和终止行下标(j)取单行或者连续多行,不能用于列的选取. data.loc[行名,列名]: 用对象的.loc[]方法实现各种取数据方式. data.iloc[行下标,列下标]: 用对象的.iloc[]方法实现各种取数据方式. 首先生成一个DataFrame对象: import pandas as pd sco
随机推荐
- css滤镜效果(二)
- Linux脚本自动输入密码
- 通过实例浅析Python对比C语言的编程思想差异
- C#操作txt文件,进行清空添加操作的小例子
- PHP管理依赖(dependency)关系工具 Composer的自动加载(autoload)
- php中判断数组相等的方法以及数组运算符介绍
- Python实现多线程抓取网页功能实例详解
- C#敏感词过滤实现方法
- PHP的AES加密算法完整实例
- Javascript removeChild()删除节点及删除子节点的方法
- php实现模拟post请求用法实例
- 鼠标拖动改变DIV等网页元素的大小的实现方法
- javascript 层隐藏和显示的代码
- centos7安装mysql5.6的方法
- IE6下通过a标签点击切换图片的问题
- Apache开启GZIP压缩功能方法
- 因str_replace导致的注入问题总结
- 修改ORACLE数据库密码有效期的方法
- ansible批量部署tomcat的方法
- python的常用模块之collections模块详解