Python如何使用logging为Flask增加logid

我们为了问题定位,常见做法是在日志中加入 logid,用于关联一个请求的上下文。这就涉及两个问题:1. logid 这个“全局”变量如何保存传递。2. 如何让打印日志的时候自动带上 logid(毕竟不能每个打日志的地方都手动传入)

logid保存与传递

传统做法就是讲 logid 保存在 threading.local 里面,一个线程里都是一样的值。在 before_app_request 就生成好,logid并放进去。

import threading
 
from blueprint.hooks import hooks
 
thread_local = threading.local()
app = Flask()
app.thread_local = thread_local
import uuid
 
from flask import Blueprint
from flask import current_app as app
 
hooks = Blueprint('hooks', __name__)
 
@hooks.before_app_request
def before_request():
    """
    处理请求之前的钩子
    :return:
    """
    # 生成logid
    app.thread_local.logid = uuid.uuid1().time

因为需要一个数字的 logid 所以简单使用 uuid.uuid1().time 一般并发完全够了,不会重复且趋势递增(看logid就能知道请求的早晚)。

打印日志自动带上logid

这个就是 Python 日志库自带的功能了,可以使用 Filter 来实现这个需求。

import logging
 
# https://docs.python.org/3/library/logging.html#logrecord-attributes
log_format = "%(asctime)s %(levelname)s [%(threadName)s-%(thread)d] %(logid)s %(filename)s:%(lineno)d %(message)s"
file_handler = logging.FileHandler(file_name)
logger = logging.getLogger()
logid_filter = ContextFilter()
file_handler.addFilter(logid_filter)
file_handler.setFormatter(logging.Formatter(log_format))
logger.addHandler(file_handler)
 
class ContextFilter(logging.Filter):
    """
    logging Filter
    """
 
    def filter(self, record):
        """
        threading local 获取logid
        :param record:
        :return:
        """
        log_id = thread_local.logid if hasattr(thread_local, 'logid') else '-'
        record.logid = log_id
 
        return True

log_format 中我们用了很多系统自带的占位符,但 %(logid)s 默认没有的。每条日志打印输出前都会过 Filter,利用此特征我们就可以把 record.logid 赋值上,最终打印出来的时候就有 logid 了。

虽然最终实现了,但因为是通用化方案,所以有些复杂了。其实官方教程中介绍了一种更加简单的方式:injecting-request-information,看来没事还得多看看官方文档。

以上就是Python如何使用logging为Flask增加logid的详细内容,更多关于Python为Flask增加logid的资料请关注我们其它相关文章!

(0)

相关推荐

  • python (logging) 日志按日期、大小回滚的操作

    描述: 日志按日期.大小回滚 代码: # -*- coding: utf-8 -*- import os import logging.handlers log_dir = os.path.dirname(os.path.abspath(__file__)) + os.sep + 'logs' if not os.path.isdir(log_dir): os.makedirs(log_dir) # CONSTANT VARIABLES MODULE_NAME = 'my_module' LOG

  • 解决python logging遇到的坑 日志重复打印问题

    python 中 logging模块 假如遇到 多线程 或者 多进程 或者在web框架中自定义logging的话(一个请求就是一个独立的线程)非常容易重复打印日志 和造成内存崩溃,所以: 解决方法如下: 重写日志方法 用类: class Log(): import logging def __init__(self): self.logger = logging.getLogger(__name__) # 以下三行为清空上次文件 # 这为清空当前文件的logging 因为logging会包含所有

  • Python中logging日志的四个等级和使用

    1. logging日志的介绍 在现实生活中,记录日志非常重要,比如:银行转账时会有转账记录:飞机飞行过程中,会有个黑盒子(飞行数据记录器)记录着飞机的飞行过程,那在咱们python程序中想要记录程序在运行时所产生的日志信息,怎么做呢? 可以使用 logging 这个包来完成 记录程序日志信息的目的是: 1. 可以很方便的了解程序的运行情况 2. 可以分析用户的操作行为.喜好等信息 3. 方便开发人员检查bug 2. logging日志级别介绍 日志等级可以分为5个,从低到高分别是: 1. DE

  • Python+logging输出到屏幕将log日志写入文件

    日志 日志是跟踪软件运行时所发生的事件的一种方法.软件开发者在代码中调用日志函数,表明发生了特定的事件.事件由描述性消息描述,该描述性消息可以可选地包含可变数据(即,对于事件的每次出现都潜在地不同的数据).事件还具有开发者归因于事件的重要性:重要性也可以称为级别或严重性. logging提供了一组便利的函数,用来做简单的日志.它们是 debug(). info(). warning(). error() 和 critical(). logging函数根据它们用来跟踪的事件的级别或严重程度来命名.

  • python 日志模块logging的使用场景及示例

    前言 日志是对于软件执行所发生的事件的一种追踪记录方式.日常使用过程中对代码执行的错误和问题会进行查看日志来分析定位问题所在.平常编写代码以及调试也经常用到.通常的新手的做法是直接print打印,但是打印的结果只在控制台显示.今天我们学习一种高级的日志打印和记录模块logging. logging提供了一系列的函数,它们是debug(), info(), warning(), error(), 和critical(). 他们的使用场景请看下表 你想要执行的任务 此任务的最好的工具 对于命令行或程

  • Python的logging模块基本用法

    在服务器部署时,往往都是在后台运行.当程序发生特定的错误时,我希望能够在日志中查询.因此这里熟悉以下 logging 模块的用法. logging 模块定义了报告错误和状态信息的标准 API. logging 的组件 日志系统有 4 个相互交互的组件.我们需要使用 Logger 实例来向日志添加信息.触发日志会创建一个 LogRecord,用于内存中存储信息.Logger 可能有很多 Handler 对象,用于接收和处理日志记录.Handler 使用 Formatter 来输出日志记录. 向文件

  • python 实现logging动态变更输出日志文件名

    python作为一门非常容易上手的脚本语言,日志输出更是简单,logging模块,简单的设置配置和属性,就能实现到控制台输出日志,在basicConfig()设置文件名,就能够将日志信息写入文件,简直是简单到不能再简单. 最近在项目中就遇到一个日志问题,使用python编写的服务程序一直运行,连续处理一些任务,每个任务的关键信息都需要输出到文件中,便于维护人员查看,可是对于简单实用logging来说,日志写入文件非常简单,由于服务程序连续运行,一直向一个文件记录日志信息有些不妥,有常识的开发人员

  • Python logging自定义字段输出及打印颜色

    logging模块是Python的一个标准库模块,开发过程中,可以通过该模块,灵活的完成日志的记录. logging模块提供了两种记录日志的方式: 1)使用logging提供的模块级别的函数(logging.basicConfig,logging.debug,logging.info...) 2)使用logging模块的组件(loggers,handlers,filters,formatters) 简单示例 import json import logging class JsonFilter(

  • Python日志打印里logging.getLogger源码分析详解

    实践环境 WIN 10 Python 3.6.5 函数说明 logging.getLogger(name=None) getLogger函数位于logging/__init__.py脚本 源码分析 _loggerClass = Logger # ...略 root = RootLogger(WARNING) Logger.root = root Logger.manager = Manager(Logger.root) # ...略 def getLogger(name=None): "&quo

  • python 如何对logging日志封装

    作者:做梦的人(小姐姐) 出处:https://www.cnblogs.com/chongyou/ 因为最近在做平台,发现有同事,使用django封装了日志模块,看样子很简单,准备自己单独做了一个日志封装模板,对于python不熟练的我,封装部分参考了多个博主的内容,形成自己的日志模块,内容如下: 封装部分 创建一个logutil2的py文件 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: zhangjun # @Date  :

  • Python logging模块handlers用法详解

    一.handlers是什么? logging模块中包含的类 用来自定义日志对象的规则(比如:设置日志输出格式.等级等) 常用3个子类:StreamHandler.FileHandler.TimedRotatingFileHandler 二.handlers基础应用 2.1 StreamHandler 控制台输出日志 import logging #创建一个logger日志对象 logger = logging.getLogger('test_logger') logger.setLevel(lo

随机推荐