pytorch损失反向传播后梯度为none的问题
错误代码:输出grad为none
a = torch.ones((2, 2), requires_grad=True).to(device) b = a.sum() b.backward() print(a.grad)
由于.to(device)是一次操作,此时的a已经不是叶子节点了
修改后的代码为:
a = torch.ones((2, 2), requires_grad=True) c = a.to(device) b = c.sum() b.backward() print(a.grad)
类似错误:
self.miu = torch.nn.Parameter(torch.ones(self.dimensional)) * 0.01
应该为
self.miu = torch.nn.Parameter(torch.ones(self.dimensional) * 0.01)
补充:pytorch梯度返回none的bug
pytorch1.4.0如果使用了view方法,reshape方法
tensor即使设置了requires_grad,反向传播之后, x返回没有grad梯度,为none
不知道其他版本有无此bug
补充:PyTorch中梯度反向传播的注意点
在一个迭代循环中
optimizer.zero_grad()语句的位置比较随意,只要放在loss.backward()前面即可,它的作用是将梯度归零,否则会在每一个迭代中进行累加,
loss.backward()的作用是反向传播,计算梯度,optimizer.step()的功能是优化器自动完成参数的更新。
optimizer.zero_grad() loss.backward() optimizer.step()
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
PyTorch的SoftMax交叉熵损失和梯度用法
在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算 关于softmax_cross_entropy求导的过程,可以参考HERE 示例: # -*- coding: utf-8 -*- import torch import torch.autograd as autograd from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn import nu
-
pytorch 禁止/允许计算局部梯度的操作
一.禁止计算局部梯度 torch.autogard.no_grad: 禁用梯度计算的上下文管理器. 当确定不会调用Tensor.backward()计算梯度时,设置禁止计算梯度会减少内存消耗.如果需要计算梯度设置Tensor.requires_grad=True 两种禁用方法: 将不用计算梯度的变量放在with torch.no_grad()里 >>> x = torch.tensor([1.], requires_grad=True) >>> with torch.n
-
Pytorch实现将模型的所有参数的梯度清0
有两种方式直接把模型的参数梯度设成0: model.zero_grad() optimizer.zero_grad()#当optimizer=optim.Optimizer(model.parameters())时,两者等效 如果想要把某一Variable的梯度置为0,只需用以下语句: Variable.grad.data.zero_() 补充知识:PyTorch中在反向传播前为什么要手动将梯度清零?optimizer.zero_grad()的意义 optimizer.zero_grad()意思
-
在pytorch中实现只让指定变量向后传播梯度
pytorch中如何只让指定变量向后传播梯度? (或者说如何让指定变量不参与后向传播?) 有以下公式,假如要让L对xvar求导: (1)中,L对xvar的求导将同时计算out1部分和out2部分: (2)中,L对xvar的求导只计算out2部分,因为out1的requires_grad=False: (3)中,L对xvar的求导只计算out1部分,因为out2的requires_grad=False: 验证如下: #!/usr/bin/env python2 # -*- coding: utf-
-
pytorch梯度剪裁方式
我就废话不多说,看例子吧! import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step() nn.utils.clip_grad_norm_ 的参数: param
-
在pytorch中对非叶节点的变量计算梯度实例
在pytorch中一般只对叶节点进行梯度计算,也就是下图中的d,e节点,而对非叶节点,也即是c,b节点则没有显式地去保留其中间计算过程中的梯度(因为一般来说只有叶节点才需要去更新),这样可以节省很大部分的显存,但是在调试过程中,有时候我们需要对中间变量梯度进行监控,以确保网络的有效性,这个时候我们需要打印出非叶节点的梯度,为了实现这个目的,我们可以通过两种手段进行. 注册hook函数 Tensor.register_hook[2] 可以注册一个反向梯度传导时的hook函数,这个hook函数将会在
-
Pytorch中的自动求梯度机制和Variable类实例
自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性:Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn,根据最新消息,在pytorch0.4更新后,torch和torch.autograd.Variab
-
pytorch对梯度进行可视化进行梯度检查教程
目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性. 实验 可视化rroi_align的梯度 1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable im_data = Variable(im_data, requires_grad=True) 2.进行前向传播,最后的loss映射为
-
pytorch损失反向传播后梯度为none的问题
错误代码:输出grad为none a = torch.ones((2, 2), requires_grad=True).to(device) b = a.sum() b.backward() print(a.grad) 由于.to(device)是一次操作,此时的a已经不是叶子节点了 修改后的代码为: a = torch.ones((2, 2), requires_grad=True) c = a.to(device) b = c.sum() b.backward() print(a.grad)
-
pytorch loss反向传播出错的解决方案
今天在使用pytorch进行训练,在运行 loss.backward() 误差反向传播时出错 : RuntimeError: grad can be implicitly created only for scalar outputs File "train.py", line 143, in train loss.backward() File "/usr/local/lib/python3.6/dist-packages/torch/tensor.py", li
-
Pytorch反向传播中的细节-计算梯度时的默认累加操作
Pytorch反向传播计算梯度默认累加 今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决: pytorch实现线性回归 先附上试验代码来感受一下: torch.manual_seed(6) lr = 0.01 # 学习率 result = [] # 创建训练数据 x = torch.rand(20, 1
-
PyTorch: 梯度下降及反向传播的实例详解
线性模型 线性模型介绍 线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集.训练集包括(x,y),x为特征,y为目标.如下图: 将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w.当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数: 线性模型例子 下面通过一个例子可以观察不同权重(w)对模型损失函数的影响. #author:yuquanle #data:2018.2.5 #Study of Linear
-
PyTorch梯度下降反向传播
前言: 反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向 如题: 意思是利用这个二次模型来预测数据,减小损失函数(MSE)的值. 代码如下: import torch import matplo
-
pytorch 多个反向传播操作
之前我的一篇文章pytorch 计算图以及backward,讲了一些pytorch中基本的反向传播,理清了梯度是如何计算以及下降的,建议先看懂那个,然后再看这个. 从一个错误说起: RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed 在深度学习中,有些场景需要进行两次反向,比如Gan网络,需要对D进行一次,还要对G进行一次,很多人都会遇到
-
pytorch .detach() .detach_() 和 .data用于切断反向传播的实现
当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整:或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播 1 detach()[source] 返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad. 即使之后重新将它的requires_grad
-
pytorch中的自定义反向传播,求导实例
pytorch中自定义backward()函数.在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包. 那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢.下面的代码展示了这个功能` import torch import numpy as np from PIL import Image from torch.autograd import gradcheck class Bicu
-
Tensorflow 卷积的梯度反向传播过程
一. valid卷积的梯度 我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导):第二种情况,在已知张量的情况下,对未知卷积核求导(即对卷积核中每一个变量求导) 1.已知卷积核,对未知张量求导 我们用一个简单的例子理解valid卷积的梯度反向传播.假设有一个3x3的未知张量x,以及已知的2x2的卷积核K Tensorflow提供函数tf.nn.conv2d_backprop_input实现了valid卷积中对未知变量的求导,以
-
tensorflow 实现自定义梯度反向传播代码
以sign函数为例: sign函数可以对数值进行二值化,但在梯度反向传播是不好处理,一般采用一个近似函数的梯度作为代替,如上图的Htanh.在[-1,1]直接梯度为1,其他为0. #使用修饰器,建立梯度反向传播函数.其中op.input包含输入值.输出值,grad包含上层传来的梯度 @tf.RegisterGradient("QuantizeGrad") def sign_grad(op, grad): input = op.inputs[0] cond = (input>=-1
随机推荐
- 用vbs返回 Internet Explorer 的下载控件和 Applet 的列表
- perl脚本学习指南--读书笔记
- plsql与tsql的语法不同
- Asp.net TreeView来构建用户选择输入的方法 推荐
- .net基础收集汇总
- 详解Asp.Net MVC——控制器与动作(Controller And Action)
- COM in PHP (winows only)
- PHP Session_Regenerate_ID函数双释放内存破坏漏洞
- C#中实现屏蔽Ctrl+C的方法
- C#实现把dgv里的数据完整的复制到一张内存表的方法
- javascript求日期差的方法
- js校验表单后提交表单的三种方法总结
- 完美解决在ModalPopupExtender中使用CalendarExtender时被层遮挡的问题
- nodejs开发微信小程序实现密码加密
- jQuery筛选器children()案例详解(图文)
- Kloxo-MR VPS主机控制面板-安装使用及中文设置方法
- 在VC中隐藏控制台程序窗口的实现代码
- 页面未随软键盘上升及android隐藏软键盘总结
- 如何防止IE缓存页面文件
- vue结合Echarts实现点击高亮效果的示例