golang 定时任务方面time.Sleep和time.Tick的优劣对比分析

golang 写循环执行的定时任务,常见的有以下三种实现方式

1、time.Sleep方法:

for {
   time.Sleep(time.Second)
   fmt.Println("我在定时执行任务")
}

2、time.Tick函数:

t1:=time.Tick(3*time.Second)
for {
   select {
   case <-t1:
      fmt.Println("t1定时器")
   }
}

3、其中Tick定时任务

也可以先使用time.Ticker函数获取Ticker结构体,然后进行阻塞监听信息,这种方式可以手动选择停止定时任务,在停止任务时,减少对内存的浪费。

t:=time.NewTicker(time.Second)
for {
   select {
   case <-t.C:
      fmt.Println("t1定时器")
      t.Stop()
   }
}

其中第二种和第三种可以归为同一类

这三种定时器的实现原理

一般来说,你在使用执行定时任务的时候,一般旁人会劝你不要使用time.Sleep完成定时任务,但是为什么不能使用Sleep函数完成定时任务呢,它和Tick函数比,有什么劣势呢?这就需要我们去探讨阅读一下源码,分析一下它们之间的优劣性。

首先,我们研究一下Tick函数,func Tick(d Duration) <-chan Time

调用Tick函数会返回一个时间类型的channel,如果对channel稍微有些了解的话,我们首先会想到,既然是返回一个channel,在调用Tick方法的过程中,必然创建了goroutine,该Goroutine负责发送数据,唤醒被阻塞的定时任务。我在阅读源码之后,确实发现函数中go出去了一个协程,处理定时任务。

按照当前的理解,使用一个tick,需要go出去一个协程,效率和对内存空间的占用肯定不能比sleep函数强。我们需要继续阅读源码才拿获取到真理。

简单的调用过程我就不陈述了,我在这介绍一下核心结构体和方法(删除了部分判断代码,解释我写在表格中):

func (tb *timersBucket) addtimerLocked(t *timer) {
   t.i = len(tb.t)  //计算timersBucket中,当前定时任务的长度
   tb.t = append(tb.t, t)// 将当前定时任务加入timersBucket
   siftupTimer(tb.t, t.i)  //维护一个timer结构体的最小堆(四叉树),排序关键字为执行时间,即该定时任务下一次执行的时间
   if !tb.created {
      tb.created = true
      go timerproc(tb)// 如果还没有创建过管理定时任务的协程,则创建一个,执行通知管理timer的协程,最核心代码
   }
}

timersBucket,顾名思义,时间任务桶,是外界不可见的全局变量。每当有新的timer定时器任务时,会将timer加入到timersBucket中的timer切片。timerBucket结构体如下:

type timersBucket struct {
   lock         mutex //添加新定时任务时需要加锁(冲突点在于维护堆)
   t            []*timer //timer切片,构造方式为四叉树最小堆
}

func timerproc(tb *timersBucket) 详细介绍

可以称之为定时任务处理器,所有的定时任务都会加入timersBucket,然后在该函数中等待被处理。

等待被处理的timer,根据when字段(任务执行的时间,int类型,纳秒级别)构成一个最小堆,每次处理完成堆顶的某个timer时,会给它的when字段加上定时任务循环间隔时间(即Tick(d Duration) 中的d参数),然后重新维护堆,保证when最小的timer在堆顶。当堆中没有可以处理的timer(有timer,但是还不到执行时间),需要计算当前时间和堆顶中timer的任务执行时间差值delta,定时任务处理器沉睡delta段时间,等待被调度器唤醒。

核心代码如下(注释写在每行代码的后面,删除一些判断代码以及不利于阅读的非核心代码):

func timerproc(tb *timersBucket) {
   for {
      lock(&tb.lock) //加锁
      now := nanotime()  //当前时间的纳秒值
      delta := int64(-1)  //最近要执行的timer和当前时间的差值
      for {
         if len(tb.t) == 0 {
            delta = -1
            break
         }//当前无可执行timer,直接跳出该循环
         t := tb.t[0]
         delta = t.when - now //取when组小的的timer,计算于当前时间的差值
         if delta > 0 {
            break
         }// delta大于0,说明还未到发送channel时间,需要跳出循环去睡眠delta时间
         if t.period > 0 {
            // leave in heap but adjust next time to fire
            t.when += t.period * (1 + -delta/t.period)// 计算该timer下次执行任务的时间
            siftdownTimer(tb.t, 0) //调整堆
         } else {
            // remove from heap,如果没有设定下次执行时间,则将该timer从堆中移除(time.after和time.sleep函数即是只执行一次定时任务)
            last := len(tb.t) - 1
            if last > 0 {
               tb.t[0] = tb.t[last]
               tb.t[0].i = 0
            }
            tb.t[last] = nil
            tb.t = tb.t[:last]
            if last > 0 {
               siftdownTimer(tb.t, 0)
            }
            t.i = -1 // mark as removed
         }
         f := t.f
         arg := t.arg
         seq := t.seq
         unlock(&tb.lock)//解锁
         f(arg, seq) //在channel中发送time结构体,唤醒阻塞的协程
         lock(&tb.lock)
      }
      if delta < 0  {
         // No timers left - put goroutine to sleep.
         goparkunlock(&tb.lock, "timer goroutine (idle)", traceEvGoBlock, 1)
         continue
      }// delta小于0说明当前无定时任务,直接进行阻塞进行睡眠
      tb.sleeping = true
      tb.sleepUntil = now + delta
      unlock(&tb.lock)
      notetsleepg(&tb.waitnote, delta)  //睡眠delta时间,唤醒之后就可以执行在堆顶的定时任务了
   }
}

至此,time.Tick函数涉及到的主要功能就讲解结束了,总结一下就是启动定时任务时,会创建一个唯一协程,处理timer,所有的timer都在该协程中处理。

然后,我们再阅读一下sleep的源码实现,核心源码如下:

//go:linkname timeSleep time.Sleep
func timeSleep(ns int64) {
   *t = timer{} //创建一个定时任务
   t.when = nanotime() + ns //计算定时任务的执行时间点
   t.f = goroutineReady //执行方法
   tb.addtimerLocked(t)  //加入timer堆,并在timer定时任务执行协程中等待被执行
   goparkunlock(&tb.lock, "sleep", traceEvGoSleep, 2) //睡眠,等待定时任务协程通知唤醒
}

读了sleep的核心代码之后,是不是突然发现和Tick函数的内容很类似,都创建了timer,并加入了定时任务处理协程。神奇之处就在于,实际上这两个函数产生的timer都放入了同一个timer堆,都在定时任务处理协程中等待被处理。

优劣性对比,使用建议

现在我们知道了,Tick,Sleep,包括time.After函数,都使用的timer结构体,都会被放在同一个协程中统一处理,这样看起来使用Tick,Sleep并没有什么区别。

实际上是有区别的,Sleep是使用睡眠完成定时任务,需要被调度唤醒。Tick函数是使用channel阻塞当前协程,完成定时任务的执行。当前并不清楚golang 阻塞和睡眠对资源的消耗会有什么区别,这方面不能给出建议。

但是使用channel阻塞协程完成定时任务比较灵活,可以结合select设置超时时间以及默认执行方法,而且可以设置timer的主动关闭,以及不需要每次都生成一个timer(这方面节省系统内存,垃圾收回也需要时间)。

所以,建议使用time.Tick完成定时任务。

补充:Golang 定时器timer和ticker

两种类型的定时器:ticker和timer。两者有什么区别呢?请看如下代码:

ticker

package main
import (
        "fmt"
        "time"
)
func main() {
        d := time.Duration(time.Second*2)
        t := time.NewTicker(d)
        defer t.Stop()
        for {
                <- t.C
                fmt.Println("timeout...")
        }
}

output:

timeout…

timeout…

timeout…

解析

ticker只要定义完成,从此刻开始计时,不需要任何其他的操作,每隔固定时间都会触发。

timer

package main
import (
        "fmt"
        "time"
)
func main() {
        d := time.Duration(time.Second*2)
        t := time.NewTimer(d)
        defer t.Stop()
        for {
                <- t.C
                fmt.Println("timeout...")
  // need reset
  t.Reset(time.Second*2)
        }
}

output:

timeout…

timeout…

timeout…

解析

使用timer定时器,超时后需要重置,才能继续触发。

ticker 例子展示

package main
import (
        "fmt"
        "time"
)
func main() {
        t := time.NewTicker(3*time.Second)
        defer t.Stop()
        fmt.Println(time.Now())
        time.Sleep(4*time.Second)
        for {
                select {
                case <-t.C:
                        fmt.Println(time.Now())
                }
        }
}

output:

2018-04-02 19:08:22.2797 +0800 CST

2018-04-02 19:08:26.3087 +0800 CST

2018-04-02 19:08:28.2797 +0800 CST

2018-04-02 19:08:31.2797 +0800 CST

2018-04-02 19:08:34.2797 +0800 CST

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • golang定时器和超时的使用详解

    我就废话不多说了,大家还是直接看代码吧~ func main() { var a chan string a =make(chan string) go sendDataTo(a) go timing() getAchan(10*time.Second,a) } func sendDataTo(a chan string) { for { a <- "我是a通道的数据" time.Sleep(1e9 *3) } } //在一定时间内接收不到a的数据则超时 func getAcha

  • golang 实现json类型不确定时的转换

    将json转为结构体时,经常会遇到无法确定某个字段类型的情况.在Go中可以使用interface 任意类型来解决. // convert json to struct // type uncertain package main import ( "fmt" "encoding/json" ) type Host struct { Id interface{} IdcId interface{} } func main() { b := []byte(`{"

  • Golang 定时器(Timer 和 Ticker),这篇文章就够了

    定时器是什么 Golang 原生 time 包下可以用来执行一些定时任务或者是周期性的任务的一个工具 本文基于 Go 1.14,如果以下文章有哪里不对或者问题的地方,欢迎讨论学习 定时器的日常使用 Timer 相关 func NewTimer(d Duration) *Timer func (t *Timer) Reset(d Duration) bool func (t *Timer) Stop() bool func After(d Duration) <-chan Time func Af

  • Golang Cron 定时任务的实现示例

    开门见山写一个 package main import ( "fmt" "github.com/robfig/cron" "log" "strings" "time" ) func CronTask() { log.Println("******** ******* *******") } func CronTest() { log.Println("Starting Cron

  • Golang定时器的2种实现方法与区别

    不得不说,golang的sdk做了太多的东西,定时器在golang里实现起来非常的简单 两种方式 NewTicker() NewTimer() 代码如下 NewTicker() 方式 func foo() { fmt.Println("foo() start.") time.Sleep(time.Second * 3) fmt.Println("foo() end.") } func TestTicker(t *testing.T) { ticker := time

  • golang 定时任务方面time.Sleep和time.Tick的优劣对比分析

    golang 写循环执行的定时任务,常见的有以下三种实现方式 1.time.Sleep方法: for { time.Sleep(time.Second) fmt.Println("我在定时执行任务") } 2.time.Tick函数: t1:=time.Tick(3*time.Second) for { select { case <-t1: fmt.Println("t1定时器") } } 3.其中Tick定时任务 也可以先使用time.Ticker函数获取

  • 详解golang 定时任务time.Sleep和time.Tick实现结果比较

    总的来说 Sleep是使用睡眠完成定时,结束后继续往下执行循环来实现定时任务. Tick函数是使用channel阻塞当前协程,完成定时任务的执行 现在来看一下 两种方法实现出来的效果有何不同 这里我们设置定时时长为5 使用“Do Something” 来模拟定时任务执行需要的时间 分1s执行,10s执行两种情况 代码如下 func Test_Sleep(t *testing.T) {     for i := 0; i < 3; i++ {         Debug("begin&quo

  • 一文详解Golang 定时任务库 gron 设计和原理

    目录 cron 简介 gron 定时参数 源码解析 Cron Entry 按照时间排序 新增定时任务 启动和停止 Schedule 扩展性 经典写法-控制退出 结语 cron 简介 在 Unix-like 操作系统中,有一个大家都很熟悉的 cli 工具,它能够来处理定时任务,周期性任务,这就是: cron. 你只需要简单的语法控制就能实现任意[定时]的语义.用法上可以参考一下这个Crontab Guru Editor,做的非常精巧. 简单说,每一个位都代表了一个时间维度,* 代表全集,所以,上面

  • golang定时任务cron项目实操指南

    目录 一.简介: 1.cron包 2.表达式,go cron使用的和 Linux crontab 一样的表达式 3.新老版本区别 二.项目实操 1.启动daemon 守护进程 2.统计任务 总结 一.简介: 1.cron包 cron包:"github.com/robfig/cron/v3" 文档:cron package - github.com/robfig/cron - Go Packages 2.表达式,go cron使用的和 Linux crontab 一样的表达式 # 文件格

  • 关于Python与Golang语言的对比分析

    目录 一:前言 二:特点 1.Python ①解释型语言 ②动态数据类型 ③完全面向对象的语言 ④拥有强大的标准库 ⑤社区提供了大量第三方库 2.Golang ①静态强类型.编译型.并发型 ②垃圾回收机制 ③支持面向对象编程 ④丰富的标准库 ⑤内嵌C支持 三:应用 1.Python 2.Golang 一:前言 刚看了一篇软文,说什么“才华是改变人生最有效的途径”,反正呢,大体就是科技进步,要想一直在车上,就得不断的学习,刚好最近也准备学习Golang,最近火的不能在火了吧,刚好也有些Python

  • Golang算法问题之数组按指定规则排序的方法分析

    本文实例讲述了Golang算法问题之数组按指定规则排序的方法.分享给大家供大家参考,具体如下: 给出一个二维数组,请将这个二维数组按第i列(i从1开始)排序,如果第i列相同,则对相同的行按第i+1列的元素排序, 如果第i+1列的元素也相同,则继续比较第i+2列,以此类推,直到最后一列.如果第i列到最后一列都相同,则按原序排列. 样例输入: 1,2,3 2,3,4 2,3,1 1,3,1 按第2列排序,输出: 1,2,3 2,3,1 1,3,1 2,3,4 代码实现: 复制代码 代码如下: pac

  • golang 字符串拼接性能的对比分析

    背景 最近在做一个服务发现/注册的agent, 各个服务需要通过这个agent来注册自己的服务,在完成 开发后,测试性能时发现性能达不到要求,通过pprof 来确认cpu主要耗费在gc上,分析结果主要是由于字符串拼接导致,故需要测试一下字符串拼接的几种方法的性能: 字符串拼接的几种方法 1.直接使用加号进行拼接 2.strings.Join() 3.fmt.Sprintf() 4.bytes.Buffer 大量字符串拼接性能测试 我们使用的场景主要是大量字符串拼接,所以需要的场景是不断在字符串上

  • Golang::slice和nil的对比分析

    我就废话不多说了,大家还是直接看代码吧~ package main import ( "fmt" ) func main() { var s1 []int if s1 == nil { fmt.Println("s1==nil") } else { fmt.Println("s1!=nil") } var arr = [5]int{} s1 = arr[:] if s1 == nil { fmt.Println("s1==nil&quo

  • golang 各种排序大比拼实例

    1.准备工作 准备数据: 生成随机数并写入文件,之后在把数据读取出来 //新生成整数随机数,并存储在txt文件中, func NewIntRandm(fileName string, number, maxrandm int) { filename := fileName file, err := os.Create(filename) if err != nil { return } r := rand.New(rand.NewSource(time.Now().UnixNano())) ra

  • golang 常用定时任务汇总

    目录 前言 cronexpr库 定时语法介绍 常用定时 定时代码 结语 前言 项目中经常有定时任务的需求,一般都是利用linux的cron命令,定时执行脚本,无论从管理上来说还是从开发上来说都不是最好的方案,要是能在项目里直接开发定时任务,就比较完美了. golang利用goroutine外加github.com/gorhill/cronexpr库就可实现定时任务,代码简单,原理简单. cronexpr库 定时语法介绍 该库是一个定时字符串规则解析库,同linux中的cron类似,但是可以精确到

随机推荐