pytorch对梯度进行可视化进行梯度检查教程
目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性。
实验
可视化rroi_align的梯度
1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable
im_data = Variable(im_data, requires_grad=True)
2.进行前向传播,最后的loss映射为一个一维的张量
pooled_feat = roipool(im_data, rois.view(-1, 6)) res = pooled_feat.pow(2).sum() res.backward()
3.注意求loss的时候采用更加复杂,或者更多的运算(这样在梯度可视化的时候效果才更加明显)
可视化效果
原始图片
梯度可视化图片
原图+梯度图
小结:
可以看到误差梯度的位置是正确的,误差是否正确,需要其他方式验证(暂时没有思路)
可以看到上面在求loss的时候为:loss = sum(x2),但是如果换成:loss = mean(x),效果就没有上面明显。
实验二的效果
loss = mean(x)
可以看到根本无法看到误差梯度的位置信息
实验三:loss = sum(x)
小结: 可以看到位置信息有差别,比如国徽部分,这会让人以为,国徽部分只利用了左部分的信息,或者自己手写的操作误差索引不对。
可以通过两种方式进行验证
1.用更多,更复杂的运算求loss,比如pow,等
2.用matplotlib显示图片后,用鼠标可以指示每个点的具体的值,可以检测有误差梯度区域是否和无误差梯度区域有差别。
以上这篇pytorch对梯度进行可视化进行梯度检查教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
有关Tensorflow梯度下降常用的优化方法分享
1.tf.train.exponential_decay() 指数衰减学习率: #tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False): #指数衰减学习率 #learning_rate-学习率 #global_steps-训练轮数 #decay_steps-完整的使用一遍训练数据所需的迭代轮数:=总训练样本数/batch #decay_rate-
-
基于梯度爆炸的解决方法:clip gradient
1. 梯度爆炸的影响 在一个只有一个隐藏节点的网络中,损失函数和权值w偏置b构成error surface,其中有一堵墙,如下所示 损失函数每次迭代都是每次一小步,但是当遇到这堵墙时,在墙上的某点计算梯度,梯度会瞬间增大,指向某处不理想的位置.如果我们使用缩放,可以把误导控制在可接受范围内,如虚线箭头所示 2. 解决梯度爆炸问题的方法 通常会使用一种叫"clip gradients "的方法. 它能有效地权重控制在一定范围之内. 算法步骤如下. 首先设置一个梯度阈值:clip_grad
-
TensorFlow梯度求解tf.gradients实例
我就废话不多说了,直接上代码吧! import tensorflow as tf w1 = tf.Variable([[1,2]]) w2 = tf.Variable([[3,4]]) res = tf.matmul(w1, [[2],[1]]) grads = tf.gradients(res,[w1]) with tf.Session() as sess: tf.global_variables_initializer().run() print sess.run(res) print se
-
pytorch梯度剪裁方式
我就废话不多说,看例子吧! import torch.nn as nn outputs = model(data) loss= loss_fn(outputs, target) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2) optimizer.step() nn.utils.clip_grad_norm_ 的参数: param
-
tensorflow 查看梯度方式
1. 为什么要查看梯度 对于初学者来说网络经常不收敛,loss很奇怪(就是不收敛),所以怀疑是反向传播中梯度的问题 (1)求导之后的数(的绝对值)越来越小(趋近于0),这就是梯度消失 (2)求导之后的数(的绝对值)越来越大(特别大,发散),这就是梯度爆炸 所以说呢,当loss不正常时,可以看看梯度是否处于爆炸,或者是消失了,梯度爆炸的话,网络中的W也会很大,人工控制一下(初始化的时候弄小点等等肯定还有其它方法,只是我不知道,知道的大神也可以稍微告诉我一下~~),要是梯度消失,可以试着用用resn
-
tensorflow求导和梯度计算实例
1. 函数求一阶导 import tensorflow as tf tf.enable_eager_execution() tfe=tf.contrib.eager from math import pi def f(x): return tf.square(tf.sin(x)) assert f(pi/2).numpy()==1.0 sess=tf.Session() grad_f=tfe.gradients_function(f) print(grad_f(np.zeros(1))[0].n
-
opencv python图像梯度实例详解
这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点
-
基于TensorFlow中自定义梯度的2种方式
前言 在深度学习中,有时候我们需要对某些节点的梯度进行一些定制,特别是该节点操作不可导(比如阶梯除法如 ),如果实在需要对这个节点进行操作,而且希望其可以反向传播,那么就需要对其进行自定义反向传播时的梯度.在有些场景,如[2]中介绍到的梯度反转(gradient inverse)中,就必须在某层节点对反向传播的梯度进行反转,也就是需要更改正常的梯度传播过程,如下图的 所示. 在tensorflow中有若干可以实现定制梯度的方法,这里介绍两种. 1. 重写梯度法 重写梯度法指的是通过tensorf
-
pytorch对梯度进行可视化进行梯度检查教程
目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性. 实验 可视化rroi_align的梯度 1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable im_data = Variable(im_data, requires_grad=True) 2.进行前向传播,最后的loss映射为
-
pytorch 权重weight 与 梯度grad 可视化操作
pytorch 权重weight 与 梯度grad 可视化 查看特定layer的权重以及相应的梯度信息 打印模型 观察到model下面有module的key,module下面有features的key, features下面有(0)的key,这样就可以直接打印出weight了 在pdb debug界面输入p model.module.features[0].weight,就可以看到weight,输入 p model.module.features[0].weight.grad 就可以查看梯度信息
-
VS Code使用Git可视化管理源代码详细教程(推荐)
前言: 随着VS Code的功能和插件的不断强大和完善,它已经成为了我们日常开发中一个必不可缺的伙伴了.在之前我曾经写过一篇SourceTree使用教程详解(一个git可视化管理神器,想要了解的话可以点击查看详情),这篇文章主要是对VS Code如何使用Git可视化管理我们的程序源代码. VS Code简介: 官网下载地址: https://code.visualstudio.com/ Visual Studio Code是一个轻量级但功能强大的源代码编辑器,可在您的桌面上运行,并且可用于Win
-
Armbian5.9.0安装docker及部署可视化portainer的详细教程
目录 安装 docker 如何查看 docker 是否安装成功? 如何启动docker? 如何安装可视化portainer 安装英文版本 安装中文版 什么是docker?Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机). bare metal.OpenStack 集群和其他的基础应用平台. Docker通常用于如下场景: web应用的自动化打包和发布: 自动化测试和持续
-
Python可视化绘制图表的教程详解
目录 1.Matplotlib 程序包 2.绘图命令的基本架构及其属性设置 3.Seaborn 模块介绍 3.1 未加Seaborn 模块的效果 4.描述性统计图形概览 4.1制作数据 4.2 频数分析 python 有许多可视化工具,但本书只介绍Matplotlib.Matplotlib是一种2D的绘图库,它可以支持硬拷贝和跨系统的交互,它可以在python脚本,IPython的交互环境下.Web应用程序中使用.该项目是由John Hunter 于2002年启动,其目的是为python构建MA
-
Spring Boot Actuator自定义健康检查教程
健康检查是Spring Boot Actuator中重要端点之一,可以非常容易查看应用运行至状态.本文在前文的基础上介绍如何自定义健康检查. 1. 概述 本节我们简单说明下依赖及启用配置,展示缺省健康信息.首先需要引入依赖: compile("org.springframework.boot:spring-boot-starter-actuator") 现在通过http://localhost:8080/actuator/health端点进行验证: {"status"
-
R语言实现各种数据可视化的超详细教程
目录 1 主成分分析可视化结果 1.1 查看莺尾花数据集(前五行,前四列) 1.2 使用莺尾花数据集进行主成分分析后可视化展示 2 圆环图绘制 3 马赛克图绘制 3.1 构造数据 3.2 ggplot2包的geom_rect()函数绘制马赛克图 3.3 vcd包的mosaic()函数绘制马赛克图 3.4 graphics包的mosaicplot()函数绘制马赛克图 4 棒棒糖图绘制 4.1 查看内置示例数据 4.2 绘制基础棒棒糖图(使用ggplot2) 4.2.1 更改点的大小,形状,颜色和透
-
Java MyBatis可视化代码生成工具使用教程
现公司架构大佬在项目中使用了 mybatis-generator-gui ,这是一款开源图形化 MyBatis 代码生成工具,使用起来相当的方便好用!推荐给在开发道路上的小伙伴们: GutHub 地址:https://github.com/zouzg/mybatis-generator-gui 使用 Git 克隆到本地,然后可直接导入开发工具 Eclipse 或者 IDEA 中使用: 这里以 Eclipse 为例,(IDEA同理). 1.工具代码结构,如下图所示: 2.打开 src/main/j
-
PyTorch: 梯度下降及反向传播的实例详解
线性模型 线性模型介绍 线性模型是很常见的机器学习模型,通常通过线性的公式来拟合训练数据集.训练集包括(x,y),x为特征,y为目标.如下图: 将真实值和预测值用于构建损失函数,训练的目标是最小化这个函数,从而更新w.当损失函数达到最小时(理想上,实际情况可能会陷入局部最优),此时的模型为最优模型,线性模型常见的的损失函数: 线性模型例子 下面通过一个例子可以观察不同权重(w)对模型损失函数的影响. #author:yuquanle #data:2018.2.5 #Study of Linear
-
PyTorch 如何自动计算梯度
在PyTorch中,torch.Tensor类是存储和变换数据的重要工具,相比于Numpy,Tensor提供GPU计算和自动求梯度等更多功能,在深度学习中,我们经常需要对函数求梯度(gradient). PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播. 本篇将介绍和总结如何使用autograd包来进行自动求梯度的有关操作. 1. 概念 Tensor是这个pytorch的自动求导部分的核心类,如果将其属性.requires_grad=True,它将开
随机推荐
- 推荐dojo学习笔记
- sql2008设置subcategory报表参数可用值和默认值步骤分享
- javascript中闭包概念与用法深入理解
- 详解 Java继承关系下的构造方法调用
- 简单的用java实现读/写文本文件的示例
- java反射_改变private中的变量及方法的简单实例
- Swift教程之函数详解
- jquery中dom操作和事件的实例学习 下拉框应用
- thinkPHP简单调用函数与类库的方法
- C#列表框、复选列表框、组合框的用法实例
- 如何测试mysql触发器和存储过程
- Google (Local) Search API的简单使用介绍
- Linux里awk中split函数的用法小结
- PHP脚本中include文件出错解决方法
- 轻松掌握jQuery中wrap()与unwrap()函数的用法
- 使用jQuery避免鼠标双击的解决方案
- 特别注意"熊猫烧香"病毒!感染全盘EXE文件,并自动删除GHO文件
- Apache服务器配置全攻略
- php中$_POST与php://input的区别实例分析
- 基于mysql的论坛(1)