使用sklearn的cross_val_score进行交叉验证实例

在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享。

(除了贝叶斯优化等方法)其它简单的验证有两种方法:

1、通过经常使用某个模型的经验和高超的数学知识。

2、通过交叉验证的方法,逐个来验证。

很显然我是属于后者所以我需要在这里记录一下

sklearn 的 cross_val_score:

我使用是cross_val_score方法,在sklearn中可以使用这个方法。交叉验证的原理不好表述下面随手画了一个图:

(我都没见过这么丑的图)简单说下,比如上面,我们将数据集分为10折,做一次交叉验证,实际上它是计算了十次,将每一折都当做一次测试集,其余九折当做训练集,这样循环十次。通过传入的模型,训练十次,最后将十次结果求平均值。将每个数据集都算一次

交叉验证优点:

1:交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。

2:还可以从有限的数据中获取尽可能多的有效信息。

我们如何利用它来选择参数呢?

我们可以给它加上循环,通过循环不断的改变参数,再利用交叉验证来评估不同参数模型的能力。最终选择能力最优的模型。

下面通过一个简单的实例来说明:(iris鸢尾花)

from sklearn import datasets #自带数据集
from sklearn.model_selection import train_test_split,cross_val_score #划分数据 交叉验证
from sklearn.neighbors import KNeighborsClassifier #一个简单的模型,只有K一个参数,类似K-means
import matplotlib.pyplot as plt
iris = datasets.load_iris() #加载sklearn自带的数据集
X = iris.data #这是数据
y = iris.target #这是每个数据所对应的标签
train_X,test_X,train_y,test_y = train_test_split(X,y,test_size=1/3,random_state=3) #这里划分数据以1/3的来划分 训练集训练结果 测试集测试结果
k_range = range(1,31)
cv_scores = [] #用来放每个模型的结果值
for n in k_range:
 knn = KNeighborsClassifier(n) #knn模型,这里一个超参数可以做预测,当多个超参数时需要使用另一种方法GridSearchCV
 scores = cross_val_score(knn,train_X,train_y,cv=10,scoring='accuracy') #cv:选择每次测试折数 accuracy:评价指标是准确度,可以省略使用默认值,具体使用参考下面。
 cv_scores.append(scores.mean())
plt.plot(k_range,cv_scores)
plt.xlabel('K')
plt.ylabel('Accuracy') #通过图像选择最好的参数
plt.show()
best_knn = KNeighborsClassifier(n_neighbors=3) # 选择最优的K=3传入模型
best_knn.fit(train_X,train_y) #训练模型
print(best_knn.score(test_X,test_y)) #看看评分

最后得分0.94

关于 cross_val_score 的 scoring 参数的选择,通过查看官方文档后可以发现相关指标的选择可以在这里找到:文档

这应该是比较简单的一个例子了,上面的注释也比较清楚,如果我表达不清楚可以问我。

补充拓展:sklearn分类算法汇总

废话不多说,上代码吧!

import os
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn import preprocessing
from sklearn import neighbors
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from time import time
from sklearn.naive_bayes import MultinomialNB
from sklearn import tree
from sklearn.ensemble import GradientBoostingClassifier

#读取sklearn自带的数据集(鸢尾花)
def getData_1():
 iris = datasets.load_iris()
 X = iris.data #样本特征矩阵,150*4矩阵,每行一个样本,每个样本维度是4
 y = iris.target #样本类别矩阵,150维行向量,每个元素代表一个样本的类别
#读取本地excel表格内的数据集(抽取每类60%样本组成训练集,剩余样本组成测试集)
#返回一个元祖,其内有4个元素(类型均为numpy.ndarray):
#(1)归一化后的训练集矩阵,每行为一个训练样本,矩阵行数=训练样本总数,矩阵列数=每个训练样本的特征数
#(2)每个训练样本的类标
#(3)归一化后的测试集矩阵,每行为一个测试样本,矩阵行数=测试样本总数,矩阵列数=每个测试样本的特征数
#(4)每个测试样本的类标
#【注】归一化采用“最大最小值”方法。
def getData_2():
 fPath = 'D:\分类算法\binary_classify_data.txt'
 if os.path.exists(fPath):
  data = pd.read_csv(fPath,header=None,skiprows=1,names=['class0','pixel0','pixel1','pixel2','pixel3'])
  X_train1, X_test1, y_train1, y_test1 = train_test_split(data, data['class0'], test_size = 0.4, random_state = 0)
  min_max_scaler = preprocessing.MinMaxScaler() #归一化
  X_train_minmax = min_max_scaler.fit_transform(np.array(X_train1))
  X_test_minmax = min_max_scaler.fit_transform(np.array(X_test1))
  return (X_train_minmax, np.array(y_train1), X_test_minmax, np.array(y_test1))
 else:
  print ('No such file or directory!')

#读取本地excel表格内的数据集(每类随机生成K个训练集和测试集的组合)
#【K的含义】假设一共有1000个样本,K取10,那么就将这1000个样本切分10份(一份100个),那么就产生了10个测试集
#对于每一份的测试集,剩余900个样本即作为训练集
#结果返回一个字典:键为集合编号(1train, 1trainclass, 1test, 1testclass, 2train, 2trainclass, 2test, 2testclass...),值为数据
#其中1train和1test为随机生成的第一组训练集和测试集(1trainclass和1testclass为训练样本类别和测试样本类别),其他以此类推
def getData_3():
 fPath = 'D:\\分类算法\\binary_classify_data.txt'
 if os.path.exists(fPath):
  #读取csv文件内的数据,
  dataMatrix = np.array(pd.read_csv(fPath,header=None,skiprows=1,names=['class0','pixel0','pixel1','pixel2','pixel3']))
  #获取每个样本的特征以及类标
  rowNum, colNum = dataMatrix.shape[0], dataMatrix.shape[1]
  sampleData = []
  sampleClass = []
  for i in range(0, rowNum):
   tempList = list(dataMatrix[i,:])
   sampleClass.append(tempList[0])
   sampleData.append(tempList[1:])
  sampleM = np.array(sampleData) #二维矩阵,一行是一个样本,行数=样本总数,列数=样本特征数
  classM = np.array(sampleClass) #一维列向量,每个元素对应每个样本所属类别
  #调用StratifiedKFold方法生成训练集和测试集
  skf = StratifiedKFold(n_splits = 10)
  setDict = {} #创建字典,用于存储生成的训练集和测试集
  count = 1
  for trainI, testI in skf.split(sampleM, classM):
   trainSTemp = [] #用于存储当前循环抽取出的训练样本数据
   trainCTemp = [] #用于存储当前循环抽取出的训练样本类标
   testSTemp = [] #用于存储当前循环抽取出的测试样本数据
   testCTemp = [] #用于存储当前循环抽取出的测试样本类标
   #生成训练集
   trainIndex = list(trainI)
   for t1 in range(0, len(trainIndex)):
    trainNum = trainIndex[t1]
    trainSTemp.append(list(sampleM[trainNum, :]))
    trainCTemp.append(list(classM)[trainNum])
   setDict[str(count) + 'train'] = np.array(trainSTemp)
   setDict[str(count) + 'trainclass'] = np.array(trainCTemp)
   #生成测试集
   testIndex = list(testI)
   for t2 in range(0, len(testIndex)):
    testNum = testIndex[t2]
    testSTemp.append(list(sampleM[testNum, :]))
    testCTemp.append(list(classM)[testNum])
   setDict[str(count) + 'test'] = np.array(testSTemp)
   setDict[str(count) + 'testclass'] = np.array(testCTemp)
   count += 1
  return setDict
 else:
  print ('No such file or directory!')
#K近邻(K Nearest Neighbor)
def KNN():
 clf = neighbors.KNeighborsClassifier()
 return clf

#线性鉴别分析(Linear Discriminant Analysis)
def LDA():
 clf = LinearDiscriminantAnalysis()
 return clf

#支持向量机(Support Vector Machine)
def SVM():
 clf = svm.SVC()
 return clf

#逻辑回归(Logistic Regression)
def LR():
 clf = LogisticRegression()
 return clf

#随机森林决策树(Random Forest)
def RF():
 clf = RandomForestClassifier()
 return clf

#多项式朴素贝叶斯分类器
def native_bayes_classifier():
 clf = MultinomialNB(alpha = 0.01)
 return clf

#决策树
def decision_tree_classifier():
 clf = tree.DecisionTreeClassifier()
 return clf

#GBDT
def gradient_boosting_classifier():
 clf = GradientBoostingClassifier(n_estimators = 200)
 return clf

#计算识别率
def getRecognitionRate(testPre, testClass):
 testNum = len(testPre)
 rightNum = 0
 for i in range(0, testNum):
  if testClass[i] == testPre[i]:
   rightNum += 1
 return float(rightNum) / float(testNum)

#report函数,将调参的详细结果存储到本地F盘(路径可自行修改,其中n_top是指定输出前多少个最优参数组合以及该组合的模型得分)
def report(results, n_top=5488):
 f = open('F:/grid_search_rf.txt', 'w')
 for i in range(1, n_top + 1):
  candidates = np.flatnonzero(results['rank_test_score'] == i)
  for candidate in candidates:
   f.write("Model with rank: {0}".format(i) + '\n')
   f.write("Mean validation score: {0:.3f} (std: {1:.3f})".format(
     results['mean_test_score'][candidate],
     results['std_test_score'][candidate]) + '\n')
   f.write("Parameters: {0}".format(results['params'][candidate]) + '\n')
   f.write("\n")
 f.close()

#自动调参(以随机森林为例)
def selectRFParam():
 clf_RF = RF()
 param_grid = {"max_depth": [3,15],
     "min_samples_split": [3, 5, 10],
     "min_samples_leaf": [3, 5, 10],
     "bootstrap": [True, False],
     "criterion": ["gini", "entropy"],
     "n_estimators": range(10,50,10)}
     # "class_weight": [{0:1,1:13.24503311,2:1.315789474,3:12.42236025,4:8.163265306,5:31.25,6:4.77326969,7:19.41747573}],
     # "max_features": range(3,10),
     # "warm_start": [True, False],
     # "oob_score": [True, False],
     # "verbose": [True, False]}
 grid_search = GridSearchCV(clf_RF, param_grid=param_grid, n_jobs=4)
 start = time()
 T = getData_2() #获取数据集
 grid_search.fit(T[0], T[1]) #传入训练集矩阵和训练样本类标
 print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
   % (time() - start, len(grid_search.cv_results_['params'])))
 report(grid_search.cv_results_)

#“主”函数1(KFold方法生成K个训练集和测试集,即数据集采用getData_3()函数获取,计算这K个组合的平均识别率)
def totalAlgorithm_1():
 #获取各个分类器
 clf_KNN = KNN()
 clf_LDA = LDA()
 clf_SVM = SVM()
 clf_LR = LR()
 clf_RF = RF()
 clf_NBC = native_bayes_classifier()
 clf_DTC = decision_tree_classifier()
 clf_GBDT = gradient_boosting_classifier()
 #获取训练集和测试集
 setDict = getData_3()
 setNums = len(setDict.keys()) / 4 #一共生成了setNums个训练集和setNums个测试集,它们之间是一一对应关系
 #定义变量,用于将每个分类器的所有识别率累加
 KNN_rate = 0.0
 LDA_rate = 0.0
 SVM_rate = 0.0
 LR_rate = 0.0
 RF_rate = 0.0
 NBC_rate = 0.0
 DTC_rate = 0.0
 GBDT_rate = 0.0
 for i in range(1, int(setNums + 1)):
  trainMatrix = setDict[str(i) + 'train']
  trainClass = setDict[str(i) + 'trainclass']
  testMatrix = setDict[str(i) + 'test']
  testClass = setDict[str(i) + 'testclass']
  #输入训练样本
  clf_KNN.fit(trainMatrix, trainClass)
  clf_LDA.fit(trainMatrix, trainClass)
  clf_SVM.fit(trainMatrix, trainClass)
  clf_LR.fit(trainMatrix, trainClass)
  clf_RF.fit(trainMatrix, trainClass)
  clf_NBC.fit(trainMatrix, trainClass)
  clf_DTC.fit(trainMatrix, trainClass)
  clf_GBDT.fit(trainMatrix, trainClass)
  #计算识别率
  KNN_rate += getRecognitionRate(clf_KNN.predict(testMatrix), testClass)
  LDA_rate += getRecognitionRate(clf_LDA.predict(testMatrix), testClass)
  SVM_rate += getRecognitionRate(clf_SVM.predict(testMatrix), testClass)
  LR_rate += getRecognitionRate(clf_LR.predict(testMatrix), testClass)
  RF_rate += getRecognitionRate(clf_RF.predict(testMatrix), testClass)
  NBC_rate += getRecognitionRate(clf_NBC.predict(testMatrix), testClass)
  DTC_rate += getRecognitionRate(clf_DTC.predict(testMatrix), testClass)
  GBDT_rate += getRecognitionRate(clf_GBDT.predict(testMatrix), testClass)
 #输出各个分类器的平均识别率(K个训练集测试集,计算平均)
 print
 print
 print
 print('K Nearest Neighbor mean recognition rate: ', KNN_rate / float(setNums))
 print('Linear Discriminant Analysis mean recognition rate: ', LDA_rate / float(setNums))
 print('Support Vector Machine mean recognition rate: ', SVM_rate / float(setNums))
 print('Logistic Regression mean recognition rate: ', LR_rate / float(setNums))
 print('Random Forest mean recognition rate: ', RF_rate / float(setNums))
 print('Native Bayes Classifier mean recognition rate: ', NBC_rate / float(setNums))
 print('Decision Tree Classifier mean recognition rate: ', DTC_rate / float(setNums))
 print('Gradient Boosting Decision Tree mean recognition rate: ', GBDT_rate / float(setNums))

#“主”函数2(每类前x%作为训练集,剩余作为测试集,即数据集用getData_2()方法获取,计算识别率)
def totalAlgorithm_2():
 #获取各个分类器
 clf_KNN = KNN()
 clf_LDA = LDA()
 clf_SVM = SVM()
 clf_LR = LR()
 clf_RF = RF()
 clf_NBC = native_bayes_classifier()
 clf_DTC = decision_tree_classifier()
 clf_GBDT = gradient_boosting_classifier()
 #获取训练集和测试集
 T = getData_2()
 trainMatrix, trainClass, testMatrix, testClass = T[0], T[1], T[2], T[3]
 #输入训练样本
 clf_KNN.fit(trainMatrix, trainClass)
 clf_LDA.fit(trainMatrix, trainClass)
 clf_SVM.fit(trainMatrix, trainClass)
 clf_LR.fit(trainMatrix, trainClass)
 clf_RF.fit(trainMatrix, trainClass)
 clf_NBC.fit(trainMatrix, trainClass)
 clf_DTC.fit(trainMatrix, trainClass)
 clf_GBDT.fit(trainMatrix, trainClass)
 #输出各个分类器的识别率
 print('K Nearest Neighbor recognition rate: ', getRecognitionRate(clf_KNN.predict(testMatrix), testClass))
 print('Linear Discriminant Analysis recognition rate: ', getRecognitionRate(clf_LDA.predict(testMatrix), testClass))
 print('Support Vector Machine recognition rate: ', getRecognitionRate(clf_SVM.predict(testMatrix), testClass))
 print('Logistic Regression recognition rate: ', getRecognitionRate(clf_LR.predict(testMatrix), testClass))
 print('Random Forest recognition rate: ', getRecognitionRate(clf_RF.predict(testMatrix), testClass))
 print('Native Bayes Classifier recognition rate: ', getRecognitionRate(clf_NBC.predict(testMatrix), testClass))
 print('Decision Tree Classifier recognition rate: ', getRecognitionRate(clf_DTC.predict(testMatrix), testClass))
 print('Gradient Boosting Decision Tree recognition rate: ', getRecognitionRate(clf_GBDT.predict(testMatrix), testClass))

if __name__ == '__main__':
 print('K个训练集和测试集的平均识别率')
 totalAlgorithm_1()
 print('每类前x%训练,剩余测试,各个模型的识别率')
 totalAlgorithm_2()
 selectRFParam()
 print('随机森林参数调优完成!')

以上都是个人理解,如果有问题还望指出。希望大家多多支持我们!

(0)

相关推荐

  • K最近邻算法(KNN)---sklearn+python实现方式

    k-近邻算法概述 简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类. k-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标

  • sklearn+python:线性回归案例

    使用一阶线性方程预测波士顿房价 载入的数据是随sklearn一起发布的,来自boston 1993年之前收集的506个房屋的数据和价格.load_boston()用于载入数据. from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from sklearn.linear_model import LinearRegression bosto

  • 使用sklearn进行对数据标准化、归一化以及将数据还原的方法

    在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理. 这里通过使用sklearn.preprocess模块进行处理. 一.标准化和归一化的区别 归一化其实就是标准化的一种方式,只不过归一化是将数据映射到了[0,1]这个区间中. 标准化则是将数据按照比例缩放,使之放到一个特定区间中.标准化后的数据的均值=0,标准差=1,因而标准化的数据可正可负. 二.使用sklearn进行标准化和标准化还原 原理: 即先求出全部数据的均值和方差,再进行计算. 最后的结果均值为0,方差是1,从公

  • 使用sklearn的cross_val_score进行交叉验证实例

    在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型.但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享. (除了贝叶斯优化等方法)其它简单的验证有两种方法: 1.通过经常使用某个模型的经验和高超的数学知识. 2.通过交叉验证的方法,逐个来验证. 很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_val_score方法,在sklearn中可以使用这个方法.交叉验证的原

  • sklearn和keras的数据切分与交叉验证的实例详解

    在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法: 使用自动切分的验证集 使用手动切分的验证集 一.自动切分 在Keras中,可以从数据集中切分出一部分作为验证集,并且在每次迭代(epoch)时在验证集中评估模型的性能. 具体地,调用model.fit()训练模型时,可通过validation_split参数来指定从数据集中切分出验证集的比例. # MLP with automatic validation set from keras.mode

  • sklearn中的交叉验证的实现(Cross-Validation)

    sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 先导入需要的库及数据集 In [1]: import numpy as np In [2]: from sklearn.model_selection impor

  • Python sklearn KFold 生成交叉验证数据集的方法

    源起: 1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用sklearn提供的KFold并不能满足这个需求. 2.将生成的交叉验证数据集保存成CSV文件,而不是直接用sklearn训练分类模型. 3.在编码过程中有一的误区需要注意: 这个sklearn官方给出的文档 >>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = [&quo

  • python 留一交叉验证的实例

    目录 python 留一交叉验证 基本原理 代码实现 留一法交叉验证 Leave-One-Out Cross Validation 我们用SKlearn库来实现一下LOO python 留一交叉验证 基本原理 K折交叉验证 简单来说,K折交叉验证就是: 把数据集划分成K份,取出其中一份作为测试集,另外的K - 1份作为训练集. 通过训练集得到回归方程,再把测试集带入该回归方程,得到预测值. 计算预测值与真实值的差值的平方,得到平方损失函数(或其他的损失函数). 重复以上过程,总共得到K个回归方程

  •  分享Python 中的 7 种交叉验证方法

    目录 一.什么是交叉验证? 二.它是如何解决过拟合问题的? 1.HoldOut交叉验证 2.K折交叉验证 3.分层K折交叉验证 4.LeavePOut交叉验证 5.留一交叉验证 6.蒙特卡罗交叉验证(ShuffleSplit) 7.时间序列交叉验证 在任何有监督机器学习项目的模型构建阶段,我们训练模型的目的是从标记的示例中学习所有权重和偏差的最佳值. 如果我们使用相同的标记示例来测试我们的模型,那么这将是一个方法论错误,因为一个只会重复刚刚看到的样本标签的模型将获得完美的分数,但无法预测任何有用

  • python实现K折交叉验证

    本文实例为大家分享了python实现K折交叉验证的具体代码,供大家参考,具体内容如下 用KNN算法训练iris数据,并使用K折交叉验证方法找出最优的K值 import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import KFold # 主要用于K折交叉验证 # 导入iris数据集 iris =

  • Python实现K折交叉验证法的方法步骤

    学习器在测试集上的误差我们通常称作"泛化误差".要想得到"泛化误差"首先得将数据集划分为训练集和测试集.那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法.介绍这两种方法的资料有很多.下面是k折交叉验证法的python实现. ##一个简单的2折交叉验证 from sklearn.model_selection import KFold import numpy as np X=np.array([[1,2],[3,4],[1,3],[3,5]]) Y=np.a

  • 详解python实现交叉验证法与留出法

    在机器学习中,我们经常在训练集上训练模型,在测试集上测试模型.最终的目标是希望我们的模型在测试集上有最好的表现. 但是,我们往往只有一个包含m个观测的数据集D,我们既要用它进行训练,又要对它进行测试.此时,我们就需要对数据集D进行划分. 对于数据集D的划分,我们尽量需要满足三个要求: 训练集样本量充足 训练模型时的计算量可以忍受 不同的划分方式会得出不同的训练集和测试集,从而得出不同的结果,我们需要消除这种影响 我们将分别介绍留出法.交叉验证法,以及各自的python实现.自助法(bootstr

  • pytorch K折交叉验证过程说明及实现方式

    目录 K折交叉交叉验证的过程如下 交叉验证区分k折代码分析 总结 K折交叉交叉验证的过程如下 以200条数据,十折交叉验证为例子,十折也就是将数据分成10组,进行10组训练,每组用于测试的数据为:数据总条数/组数,即每组20条用于valid,180条用于train,每次valid的都是不同的. (1)将200条数据,分成按照 数据总条数/组数(折数),进行切分.然后取出第i份作为第i次的valid,剩下的作为train (2)将每组中的train数据利用DataLoader和Dataset,进行

随机推荐