对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律。

1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解:

Computes a 1-D convolution given 3-D input and filter tensors.

Given an input tensor of shape [batch, in_width, in_channels] if data_format is "NHWC", or [batch, in_channels, in_width] if data_format is "NCHW", and a filter / kernel tensor of shape [filter_width, in_channels, out_channels], this op reshapes the arguments to pass them to conv2d to perform the equivalent convolution operation.

Internally, this op reshapes the input tensors and invokes `tf.nn.conv2d`. For example, if `data_format` does not start with "NC", a tensor of shape [batch, in_width, in_channels] is reshaped to [batch, 1, in_width, in_channels], and the filter is reshaped to [1, filter_width, in_channels, out_channels]. The result is then reshaped back to [batch, out_width, out_channels] whereoutwidthisafunctionofthestrideandpaddingasinconv2dwhereoutwidthisafunctionofthestrideandpaddingasinconv2d and returned to the caller.

Args: value: A 3D `Tensor`. Must be of type `float32` or `float64`. filters: A 3D `Tensor`. Must have the same type as `input`. stride: An `integer`. The number of entries by which the filter is moved right at each step. padding: 'SAME' or 'VALID' use_cudnn_on_gpu: An optional `bool`. Defaults to `True`. data_format: An optional `string` from `"NHWC", "NCHW"`. Defaults to `"NHWC"`, the data is stored in the order of [batch, in_width, in_channels]. The `"NCHW"` format stores data as [batch, in_channels, in_width]. name: A name for the operation (optional).

Returns:

A `Tensor`. Has the same type as input.

Raises:

ValueError: if `data_format` is invalid.

什么意思呢?就是说conv1d的参数含义:(以NHWC格式为例,即,通道维在最后)

1、value:在注释中,value的格式为:[batch, in_width, in_channels],batch为样本维,表示多少个样本,in_width为宽度维,表示样本的宽度,in_channels维通道维,表示样本有多少个通道。 事实上,也可以把格式看作如下:[batch, 行数, 列数],把每一个样本看作一个平铺开的二维数组。这样的话可以方便理解。

2、filters:在注释中,filters的格式为:[filter_width, in_channels, out_channels]。按照value的第二种看法,filter_width可以看作每次与value进行卷积的行数,in_channels表示value一共有多少列(与value中的in_channels相对应)。out_channels表示输出通道,可以理解为一共有多少个卷积核,即卷积核的数目。

3、stride:一个整数,表示步长,每次(向下)移动的距离(TensorFlow中解释是向右移动的距离,这里可以看作向下移动的距离)。

4、padding:同conv2d,value是否需要在下方填补0。

5、name:名称。可省略。

首先从参数列表可以看出value指的输入的数据,stride就是卷积的步长,这里我们最有疑问的就是filters这个参数,那么我们对filter进行简单的说明。从上面可以看到filters的格式为:[filter_width, in_channels, out_channels],这是一个数组的维度,对应的是卷积核的大小,输入的channel的格式,和卷积核的个数,下面我们用例子说明问题:

import tensorflow as tf
import numpy as np

if __name__ == '__main__':
  inputs = tf.constant(np.arange(1, 6, dtype=np.float32), shape=[1, 5, 1])
  w = np.array([1, 2], dtype=np.float32).reshape([2, 1, 1])
  # filter width, filter channels and out channels(number of kernels)
  cov1 = tf.nn.conv1d(inputs, w, stride=1, padding='VALID')
  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    out = sess.run(cov1)
    print(out)

其输出为:

[[[ 5.],
    [ 8.],
    [11.],
    [14.]]]

我们分析一下,输入的数据为[[[1],[2],[3],[4],[5]]],有5个特征,分别对应的数值为1,2,3,4,5,那么经过卷积的结果为5,8,11,14,那么这个结果是怎么来的呢,我们根据卷积的计算,可以得到5 = 1*1 + 2*2, 8=2*1+ 3*2, 11 = 3*1+4*2, 14=4*1+5*2, 也就是W1=1, W2=2,正好和我们先面filters设置的数值相等,

w = np.array([1, 2], dtype=np.float32).reshape([2, 1, 1])

所以可以看到这个filtes设置的是是卷积核矩阵的,换句话说,卷积核矩阵我们是可以设置的。

2. 1.关于tf.layers.conv1d,函数的定义如下

tf.layers.conv1d(

inputs,

filters,

kernel_size,

strides=1,

padding='valid',

data_format='channels_last',

dilation_rate=1,

activation=None,

use_bias=True,

kernel_initializer=None,

bias_initializer=tf.zeros_initializer(),

kernel_regularizer=None,

bias_regularizer=None,

activity_regularizer=None,

kernel_constraint=None,

bias_constraint=None,

trainable=True,

name=None,

reuse=None

)

比较重要的几个参数是inputs, filters, kernel_size,下面分别说明

inputs : 输入tensor, 维度(None, a, b) 是一个三维的tensor

None : 一般是填充样本的个数,batch_size

a : 句子中的词数或者字数

b : 字或者词的向量维度

filters : 过滤器的个数

kernel_size : 卷积核的大小,卷积核其实应该是一个二维的,这里只需要指定一维,是因为卷积核的第二维与输入的词向量维度是一致的,因为对于句子而言,卷积的移动方向只能是沿着词的方向,即只能在列维度移动。一个例子:

import tensorflow as tf
import numpy as np

if __name__ == '__main__':
  inputs = tf.constant(np.arange(1, 6, dtype=np.float32), shape=[1, 5, 1])
  cov2 = tf.layers.conv1d(inputs, filters=1, kernel_size=2, strides=1, padding='VALID')
  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    out = sess.run(cov2)
    print(out)

输出结果:

[[[-1.9953331]
 [-3.5520997]
 [-5.108866 ]
 [-6.6656327]]]

也许你得到的结果和我得到的结果不同,因为在这个函数里面只是设置了卷积核的尺寸和步长,没有设置具体的卷积核矩阵,所以这个卷积核矩阵是随机生成的,就会出现可能运行上面的程序出现不同结果的情况。

以上这篇对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • tensorflow之自定义神经网络层实例

    如下所示: import tensorflow as tf tfe = tf.contrib.eager tf.enable_eager_execution() 大多数情况下,在为机器学习模型编写代码时,您希望在比单个操作和单个变量操作更高的抽象级别上操作. 1.关于图层的一些有用操作 许多机器学习模型可以表达为相对简单的图层的组合和堆叠,TensorFlow提供了一组许多常用图层,以及您从头开始或作为组合创建自己的应用程序特定图层的简单方法.TensorFlow在tf.keras包中包含完整的

  • tensorflow 实现自定义layer并添加到计算图中

    目的 将用户自定义的layer结合tensorflow自带的layer组成多层layer的计算图. 实现功能 对2D图像进行滑动窗口平均,并通过自定义的操作layer返回结果. import tensorflow as tf import numpy as np sess = tf.Session() #将size设为[1, 4, 4, 1]是因为tf中图像函数是处理四维图片的. #这四维依次是: 图片数量,高度, 宽度, 颜色通道 x_shape = [1,4,4,1] x_val = np.

  • 对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

    在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律. 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_wi

  • tensorflow: variable的值与variable.read_value()的值区别详解

    问题 查看 tensorflow api manual 时,看到关于 variable.read_value() 的注解如图: 那么在 tensorflow 中,variable的值 与 variable.read_value()的值 到底有何区别? 实验代码 # coding=utf-8 import tensorflow as tf # Create a variable. w = tf.Variable(initial_value=10., dtype=tf.float32) sess =

  • JS中script标签defer和async属性的区别详解

    向html页面中插入javascript代码的主要方法就是通过script标签.其中包括两种形式,第一种直接在script标签之间插入js代码,第二种即是通过src属性引入外部js文件.由于解释器在解析执行js代码期间会阻塞页面其余部分的渲染,对于存在大量js代码的页面来说会导致浏览器出现长时间的空白和延迟,为了避免这个问题,建议把全部的js引用放在</body>标签之前. script标签存在两个属性,defer和async,因此script标签的使用分为三种情况: 1.<script

  • 对pandas中两种数据类型Series和DataFrame的区别详解

    1. Series相当于数组numpy.array类似 s1=pd.Series([1,2,4,6,7,2]) s2=pd.Series([4,3,1,57,8],index=['a','b','c','d','e']) print s2 obj1=s2.values # print obj1 obj2=s2.index # print obj2 # print s2[s2>4] # print s2['b'] 1.Series 它是有索引,如果我们未指定索引,则是以数字自动生成. 下面是一些例

  • 对python中 math模块下 atan 和 atan2的区别详解

    atan 和 atan2 都是反正切函数,返回的都是弧度 对于两点形成的直线,两点分别是 point(x1,y1) 和 point(x2,y2),其斜率对应角度的计算方法可以是: angle = atan( (y2-y1)/(x2-x1) ) 或 angle = atan2( y2-y1, x2-x1 ) 因此可以看出 atan 和 atan2 的区别: 1.参数的个数不同:atan 为单个参数,atan2为两个参数 2.atan2 的优点在于: 如果 x2-x1等于0 ,角度依然可以计算,但是

  • python中urllib.request和requests的使用及区别详解

    urllib.request 我们都知道,urlopen()方法能发起最基本对的请求发起,但仅仅这些在我们的实际应用中一般都是不够的,可能我们需要加入headers之类的参数,那需要用功能更为强大的Request类来构建了 在不需要任何其他参数配置的时候,可直接通过urlopen()方法来发起一个简单的web请求 发起一个简单的请求 import urllib.request url='https://www.douban.com' webPage=urllib.request.urlopen(

  • Python中的None与 NULL(即空字符)的区别详解

    1.首先要了解Python的对象的概念: Python中,万物皆对象,所有的操作都是针对对象的,那什么是对象,5是一个int对象,'oblong'是一个str对象,异常也是一个对象,抽象一点是,人,猫,够也是一个对象 那对于一个对象,它就有包括两方面的特征:  属性:去描述它的特征  方法: 它所具有的行为 所以,对象=属性+方法 (其实方法也是一种属性,一种区别于数据属性的可调用属性 把具有相同属性和方法的对象就可以归为一类,即Classl.类就好比是一张蓝图,使用一个类可以创建多个对象实例

  • C#中托管DLL和非托管DLL的区别详解

    首先解释一下,托管DLL和非托管DLL的区别.狭义解释讲,托管DLL就在Dotnet环境生成的DLL文件.非托管DLL不是在Dotnet环境生成的DLL文件. 托管DLL文件,可以在Dotnet环境通过 "添加引用" 的方式,直接把托管DLL文件添加到项目中.然后通过 Using DLL命 名空间,来调用相应的DLL对象 .  非托管DLL文件,在Dotnet环境应用时,通过 DllImport 调用. C# 调用非托管DLL文件.DLL文件是用C语言编写的. 托管DLL就是能够在公共

  • nginx配置proxy_pass中url末尾带/与不带/的区别详解

    nginx配置proxy_pass时url末尾带"/"与不带"/"的区别如下: 注意:当location为正则表达式匹配模式时,proxy_pass中的url末尾是不允许有"/"的,因此正则表达式匹配模式不在讨论范围内.  proxy_pass配置中url末尾带/时,nginx转发时,会将原uri去除location匹配表达式后的内容拼接在proxy_pass中url之后. 测试地址:http://192.168.171.129/test/tes

  • Java中生成随机数的4种方式与区别详解

    目录 在 Java 中,生成随机数的场景有很多,所以本文我们就来盘点一下 4 种生成随机数的方式,以及它们之间的区别和每种生成方式所对应的场景. 1.Random Random 类诞生于 JDK 1.0,它产生的随机数是伪随机数,也就是有规则的随机数.Random 使用的随机算法为 linear congruential pseudorandom number generator (LGC) 线性同余法伪随机数.在随机数生成时,随机算法的起源数字称为种子数(seed),在种子数的基础上进行一定的

随机推荐