Python和OpenCV进行多尺度模板匹配实现

目录
  • 1. 效果图
  • 2. 原理
  • 3. 步骤
  • 4. 源码
  • 5. 参考

这篇博文将实现如何将标准模板匹配扩展到多尺度,从而使其更加健壮。使其可以处理模板和输入图像大小不同的匹配。

1. 效果图

模板匹配问题:对于模板和图像中不一致的情况,会发生错误检测。

如下图左侧模板小,右侧图像中大,虽然完全一致,只是大小不一样,却未被检测到。

优化:多尺度模板匹配,对于模板和图像中有平移和缩放的情况可以完美工作。
如下图:

多尺度模板匹配,gif 详细效果图

2. 原理

  • 使用cv2.matchTemplate进行模板匹配,不是很健壮。当模板的尺寸与检测图像上的尺寸不匹配时,将面临错误检测。
  • 模板匹配具有平移不变性。通过扩展可以使其对伸缩性(即大小)的变化更加健壮。
  • 多尺度模板匹配可以处理平移和缩放中的变化,但对旋转或非仿射变换的变化不具有鲁棒性。
  • 对于非仿射变换上的旋转,可使用检测关键点,提取局部不变描述符,并应用关键点匹配(keypoint matching)。
  • 如果模板相当严格且边缘映射良好,只关心平移和缩放,那么多尺度模板匹配可以提供非常好的结果;
  • 使用边缘映射而不是原始图像进行模板匹配可以大大提高模板匹配的精度。

模板匹配不能很好地说明一个对象是否没有出现在图像中。 可以通过设置相关系数的阈值,但实际上是不可靠和稳健的。优化:更健壮的方法——关键点匹配。

3. 步骤

1)在每次迭代中,图像都会被调整大小并计算Canny边缘图;
2)应用模板匹配,找到相关系数最大的图像的边界框(x,y)坐标;
3)最后,将这些值存储在簿记变量中;
4)在算法的最后,找到所有尺度上相关系数响应最大的区域的(x,y)-坐标,然后绘制边界框;

4. 源码

# USAGE
# python match.py --template cod_logo.png --images images
# USAGE2 了解实际检测原理及细节
# python match.py --template cod_logo.png --images images --visualize 1

# 导入必要的包
import argparse  # argparse解析命令行参数
import glob  # 获取输入图像的路径

import cv2  # opencv绑定
import imutils  # 图像处理的一些方法
import numpy as np  # numpy进行数值处理

# 构建命令行及解析参数
# --template 模板路径
# --images 原始图像路径
# --visualize 标志是否显示每一个迭代的可视化结果
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--template", required=True, help="Path to template image")
ap.add_argument("-i", "--images", required=True,
                help="Path to images where template will be matched")
ap.add_argument("-v", "--visualize",
                help="Flag indicating whether or not to visualize each iteration")
args = vars(ap.parse_args())

# 加载模板图像,转换灰度图,检测边缘
# 使用边缘而不是原始图像进行模板匹配可以大大提高模板匹配的精度。
template = cv2.imread(args["template"])
template = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
template = cv2.Canny(template, 50, 200)
(tH, tW) = template.shape[:2]
cv2.imshow("Template", template)

# 遍历图像以匹配模板
for imagePath in glob.glob(args["images"] + "/*.jpg"):

    # 加载图像,转换为灰度图,初始化用于追踪匹配区域的簿记变量
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    found = None

    # 遍历图像尺寸
    for scale in np.linspace(0.2, 1.0, 20)[::-1]:
        # 根据scale比例缩放图像,并保持其宽高比
        resized = imutils.resize(gray, width=int(gray.shape[1] * scale))
        r = gray.shape[1] / float(resized.shape[1])

        # 缩放到图像比模板小,则终止
        if resized.shape[0] < tH or resized.shape[1] < tW:
            break

        # 在缩放后的灰度图中检测边缘,进行模板匹配
        # 使用与模板图像完全相同的参数计算图像的Canny边缘表示;
        # 使用cv2.matchTemplate应用模板匹配;
        # cv2.minMaxLoc获取相关结果并返回一个4元组,其中分别包含最小相关值、最大相关值、最小值的(x,y)坐标和最大值的(x,y)坐标。我们只对最大值和(x,y)-坐标感兴趣,所以只保留最大值而丢弃最小值。
        edged = cv2.Canny(resized, 50, 200)
        result = cv2.matchTemplate(edged, template, cv2.TM_CCOEFF)
        (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result)

        # 检查是否可视化
        if args.get("visualize", False):
            # 在检测到的区域绘制边界框
            clone = np.dstack([edged, edged, edged])
            cv2.rectangle(clone, (maxLoc[0], maxLoc[1]),
                          (maxLoc[0] + tW, maxLoc[1] + tH), (0, 0, 255), 2)
            cv2.imshow("Visualize", clone)
            cv2.waitKey(0)

        # 如果我们找到了一个新的最大校正值,更新簿记变量值
        if found is None or maxVal > found[0]:
            found = (maxVal, maxLoc, r)

    # 解包簿记变量并基于调整大小的比率,计算边界框(x,y)坐标
    (_, maxLoc, r) = found
    (startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r))
    (endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r))

    # 在检测结果上绘制边界框并展示图像
    cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
    cv2.imshow("Image", image)
    cv2.waitKey(0)

5. 参考

https://www.pyimagesearch.com/2015/01/26/multi-scale-template-matching-using-python-opencv/

到此这篇关于Python和OpenCV进行多尺度模板匹配实现的文章就介绍到这了,更多相关OpenCV 多尺度模板匹配内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCV 模板匹配

    最近小编实现一个微信小程序「跳一跳」的自动化. 主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB. 如果放在一起说,感觉内容有些多. 所以,分三期来讲,也能多了解一些东西. 首先介绍模板匹配,然后边缘检测,最后结合ADB实现「跳一跳」自动化. 游戏虽然过时了,但是拿来练练手还是不错的. 编程就该是快乐的,哈哈. / 01 / 模板匹配 模板匹配,就是在整个图像区域里发现与给定子图像相匹配的小块区域. 这里需要一个模板图像(给定的子图像)和一个待检测的图像(原

  • Java+opencv3.2.0实现模板匹配

    模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术. 函数:Imgproc.matchTemplate(Mat image, Mat templ, Mat result, int method) 参数说明: image:源图像 templ:模板图像 result:比较结果 method:匹配算法 匹配算法: TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. TM_CCORR 相关匹配法:该方法采用乘法操作:数值越大表明匹配

  • opencv模板匹配相同位置去除重复的框

    使用opencv自带的模板匹配 1.目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. CV_TM_CCORR 相关匹配法:该方法

  • OpenCV半小时掌握基本操作之模板匹配

    目录 概述 模板匹配 案例一 案例二 [OpenCV]⚠️高手勿入! 半小时学会基本操作 ⚠️ 概述模板 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 21 课) 模板匹配 模板匹配 (Template Matching) 和卷积的原理很像. 模板在原图像上从原点开始滑动, 计算模板与图片被模板覆盖的地方的差别程度. 格式: cv2.matchTemplate(image, templ, method, r

  • OpenCV-Python实现多模板匹配

    模板匹配的作用在图像识别领域作用可大了.那什么是模板匹配? 模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术. 多模板匹配 在上一篇的实战中,我们通过人物眼睛的子图,找出了其在图像中出现位置.但是,有些情况下,并不仅仅只有一次,比如我们讲解傅里叶变换时,曾介绍一张草原的狮子图.如果匹配某个草,可能单个图像内会有很多,这个时候就要找出多个匹配结果. 而函数cv2.minMaxLoc()仅仅能找出最值,无法给出所有匹配区域的位置信息.所以,要想匹配多个结果,就需要进行如

  • Python和OpenCV进行多尺度模板匹配实现

    目录 1. 效果图 2. 原理 3. 步骤 4. 源码 5. 参考 这篇博文将实现如何将标准模板匹配扩展到多尺度,从而使其更加健壮.使其可以处理模板和输入图像大小不同的匹配. 1. 效果图 模板匹配问题:对于模板和图像中不一致的情况,会发生错误检测. 如下图左侧模板小,右侧图像中大,虽然完全一致,只是大小不一样,却未被检测到. 优化:多尺度模板匹配,对于模板和图像中有平移和缩放的情况可以完美工作. 如下图: 多尺度模板匹配,gif 详细效果图: 2. 原理 使用cv2.matchTemplate

  • Python+Opencv实现图像匹配功能(模板匹配)

    本文实例为大家分享了Python+Opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下 1.原理 简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相似度,最后就计算出了非常多的相似度: 如果只是单个目标的匹配,那只需要取相似度最大值所在的位置就可以得出匹配位置: 如果要匹配多个目标,那就设定一个阈值,就是说,只要相似度大于比如0.8,就认为是要匹配的目标. 1.1 相似度度量指标 差值平方和匹配 CV_TM_SQDIFF 标准化差值平方和匹

  • python利用opencv实现SIFT特征提取与匹配

    本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下 1.SIFT 1.1.sift的定义 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子. 1.2.sift算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善 .SIFT在数字图像的特征描述方面当之无愧可称之为最红

  • Python使用Opencv实现图像特征检测与匹配的方法

    特征检测是计算机对一张图像中最为明显的特征进行识别检测并将其勾画出来.大多数特征检测都会涉及图像的角点.边和斑点的识别.或者是物体的对称轴. 角点检测 是由Opencv的cornerHarris函数实现,其他函数参数说明如下: cv2.cornerHarris(src=gray, blockSize=9, ksize=23, k=0.04) # cornerHarris参数: # src - 数据类型为 float32 的输入图像. # blockSize - 角点检测中要考虑的领域大小. #

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

  • Python OpenCV实现图像模板匹配详解

    目录 1.什么是模板匹配及模板匹配方法matchTemplate() 介绍 素材准备 2.单模板匹配 2.1 单目标匹配 2.2 多目标匹配 3.多模板匹配 1.什么是模板匹配及模板匹配方法matchTemplate() 介绍 提供一个模板图像,一个目标图像,且满足模板图像是目标图像的一部分,从目标图像中寻找特定的模板图像的过程,即为模板匹配.OpenCV提供了matchTemplate()方法帮助我们实现模板匹配. 该方法语法如下: cv2.matchTemplate(image, templ

  • Python+Opencv实现图像模板匹配详解

    目录 引言 一.匹配方法 二.匹配单个对象 三.匹配多个对象 引言 什么是模板匹配呢? 看到这里大家是否会觉得很熟悉的感觉涌上心头!在人脸识别是不是也会看见 等等. 模板匹配可以看作是对象检测的一种非常基本的形式.使用模板匹配,我们可以使用包含要检测对象的“模板”来检测输入图像中的对象. 一.匹配方法 cv2.matchTemplate(img, templ, method) 参数:(img: 原始图像.temple: 模板图像.method: 匹配度计算方法) 方法如下: cv2.TM_SQD

随机推荐