pytorch教程之网络的构建流程笔记

目录
  • 构建网络
  • 定义一个网络
  • loss Function
  • Backprop
  • 更新权值

参考网址

构建网络

我们可以通过torch.nn包来构建网络,现在你已经看过了autograd,nn在autograd的基础上定义模型和求微分。一个nn.Module包括很多层,forward方法返回output。

一个典型的训练过程包括这么几步:
1.定义一个网络结构包含一些可训练的额参数
2.为数据集制定输入iterata
3.通过网络计算Output
4.计算loss
5.反向传播计算梯度
6.更新权值

weight = weight - learning_rate * gradient

定义一个网络

让我们来定义一个网络

import torch
import torch as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__(
        #1 input image channel ,6output image channel ,5*5convolytion kernel
        self.conv1 = nn.Conv2d(1,6,5)
        self.conv2 = nn.Conv2d(6,16,5)
        # an affine operation:y = Wx+b
        self.fc1 = nn.Linear(16*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3 = nn.Linear(84,10)
    def forward(self,x):
        #max pooling
        x.F.max_pool2d(F.relu(self.conv1(x)),(2,2))
        #2   =    (2,2)
        x.F.max_pool2d(F.relu(self.con2(x)),2)
        x = x.view(-1,self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return  x
    def num_flat_features(self,x):
        size = x.size()[1:]
        num_feature = 1
        for s in size:
            num_features *=s
        return num_features

net = Net()
print(net)

out

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

我们只需定义forward和backward函数,会自动求导通过你定义的函数,你可以使用所有的Tensor操作在forward函数中。
我们使用net.parameters()函数返回可学习的参数

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

out

10
torch.Size([6, 1, 5, 5])

让我们试试32*32的输入节点,因为lenet网络的输入应该是32*32,为了在MNIST数据集上使用lenet我们需要将图片reshpe成32*32

input = torch.randn(1,1,32,32)
oyt = net(input)
print(out)

out

tensor([[-0.1346,  0.0581, -0.0396, -0.1136, -0.1128,  0.0180, -0.1226,
         -0.0419, -0.1150,  0.0278]])

零化导数buffers所有的参数都会随机求导

net.zero_grad()
out.backward(torch.randn(1,10))

torch.nn只支持mini-batch,而不是单个的样本
例如,nn.Conv2d输入是一个4维tensors

nSamples * nChannels * Height * Width

如果你只有单个的样本,使用input.unsqueeze(0)增加一个假的batch维度
在后处理之前,让我们看看都学过什么类

Recap:

torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation, creates at least a single Function node, that connects to functions that created a Tensor and encodes its history.

目前,我们学习了:
1.定义一个神经网络
2.处理输入和使用后向传播
我们还需要学习:
1.计算loss
2.更新权值

loss Function

Loss function接受(output traget)对作为输入,计算一个反映到目标距离的值。
在nn这个包里面有很多loss function ,最简单的是nn.MSELoss,就是那输入与输出的均方误差。

举个例子

output = net(input)
target = torch.arrange(1,11)
target = target.view(1m-1)
criterion = nn.MSELoss()
loss = criterion(output,target)
print(loss)

Out:

tensor(39.1076)

Backprop

为了反向传播我们需要做的仅仅是进行loss.backward(),我们需要清除现有的梯度

更新权值

最简单常用的更新权值的方法就是SGD(Stochastic Gradient Descent )

weight = weight - learning_rata * gradiernt

我们可以通过简单的代码实现上面的公式:

learning_rata = 0.01
for f in net.parameters():
    f.data.sib_(f.grad.data *  learining_rata)

但是我们也可以使用不同的更新规则,像是 SGD, Nesterov-SGD, Adam, RMSProp, etc.
为了使用这些,我们需要torch.optim包,使用起来也很简单。

import torch.optim as optim
#creat you optimizer
optimizer = optim.SGD(net.parameters(),lr = 0.01)
#in your training loop:
optimizer.zero_grad()
output = net(input)
loss = criterion(output,target)
loss.backward()
optimizer.step()

注意gradient必须清零
现在我们调用loss.backward(),并且看看con1的bias的前后差别

ner.zero_grad()
print('conv1.bias.grad before backward')
loss.backward()
print('conv1.bias.grad after backward')
piint(net.conv1.bias.grad)

out

conv1.bias.grad before backward
tensor([ 0.,  0.,  0.,  0.,  0.,  0.])
conv1.bias.grad after backward
tensor([ 0.1178, -0.0404, -0.0810,  0.0363, -0.0631,  0.1423])

现在,我们看到了如何使用loss function
重要
torch包含很多的loss function和其他包,其余的文档可以看这里
http://pytorch.org/docs/nn

以上就是pytorch教程之网络的构建流程笔记的详细内容,更多关于pytorch教程的资料请关注我们其它相关文章!

(0)

相关推荐

  • pytorch快速搭建神经网络_Sequential操作

    之前用Class类来搭建神经网络 class Neuro_net(torch.nn.Module): """神经网络""" def __init__(self, n_feature, n_hidden_layer, n_output): super(Neuro_net, self).__init__() self.hidden_layer = torch.nn.Linear(n_feature, n_hidden_layer) self.outp

  • PyTorch如何搭建一个简单的网络

    1 任务 首先说下我们要搭建的网络要完成的学习任务: 让我们的神经网络学会逻辑异或运算,异或运算也就是俗称的"相同取0,不同取1" .再把我们的需求说的简单一点,也就是我们需要搭建这样一个神经网络,让我们在输入(1,1)时输出0,输入(1,0)时输出1(相同取0,不同取1),以此类推. 2 实现思路 因为我们的需求需要有两个输入,一个输出,所以我们需要在输入层设置两个输入节点,输出层设置一个输出节点.因为问题比较简单,所以隐含层我们只需要设置10个节点就可以达到不错的效果了,隐含层的激

  • Pytorch 神经网络—自定义数据集上实现教程

    第一步.导入需要的包 import os import scipy.io as sio import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, ut

  • 关于pytorch中全连接神经网络搭建两种模式详解

    pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式: import torch import torch.nn as nn first: class NN(nn.Module): def __init__(self): super(NN,self).__init__() self.model=nn.Sequential( nn.Linear(30,40), nn.ReLU(), nn.Linear(40,60), nn.Tanh(), nn.Linear(60,10), n

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • PyTorch的深度学习入门教程之构建神经网络

    前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch.为了避免文章过长,这五个模块分别在五篇博文中介绍. Part3:使用PyTorch构建一个神经网络 神经网络可以使用touch.nn来构建.nn依赖于autograd来定义模型,并且对其求导.一个nn.Module包含网络的层(layers),同时forward(input)可以返回output. 这是一个简单的前馈网络.它接受输入,然后一层一层向前传播,最后输出一个结果. 训练神经网络的典型步骤如下: (1)  定义

  • pytorch教程之网络的构建流程笔记

    目录 构建网络 定义一个网络 loss Function Backprop 更新权值 参考网址 构建网络 我们可以通过torch.nn包来构建网络,现在你已经看过了autograd,nn在autograd的基础上定义模型和求微分.一个nn.Module包括很多层,forward方法返回output. 一个典型的训练过程包括这么几步: 1.定义一个网络结构包含一些可训练的额参数 2.为数据集制定输入iterata 3.通过网络计算Output 4.计算loss 5.反向传播计算梯度 6.更新权值

  • Pytorch自动求导函数详解流程以及与TensorFlow搭建网络的对比

    一.定义新的自动求导函数 在底层,每个原始的自动求导运算实际上是两个在Tensor上运行的函数.其中,forward函数计算从输入Tensor获得的输出Tensors.而backward函数接收输出,Tensors对于某个标量值得梯度,并且计算输入Tensors相对于该相同标量值得梯度. 在Pytorch中,可以容易地通过定义torch.autograd.Function的子类实现forward和backward函数,来定义自动求导函数.之后就可以使用这个新的自动梯度运算符了.我们可以通过构造一

  • pytorch教程网络和损失函数的可视化代码示例

    目录 1.效果 2.环境 3.用到的代码 1.效果 2.环境 1.pytorch 2.visdom 3.python3.5 3.用到的代码 # coding:utf8 import torch from torch import nn, optim # nn 神经网络模块 optim优化函数模块 from torch.utils.data import DataLoader from torch.autograd import Variable from torchvision import t

  • PyTorch详解经典网络种含并行连结的网络GoogLeNet实现流程

    目录 1. Inception块 2. 构造 GoogLeNet 网络 3. FashionMNIST训练测试 含并行连结的网络 GoogLeNet 在GoogleNet出现值前,流行的网络结构使用的卷积核从1×1到11×11,卷积核的选择并没有太多的原因.GoogLeNet的提出,说明有时候使用多个不同大小的卷积核组合是有利的. import torch from torch import nn from torch.nn import functional as F 1. Inception

  • PyTorch详解经典网络ResNet实现流程

    目录 简述 残差结构 18-layer 实现 在数据集训练 简述 GoogleNet 和 VGG 等网络证明了,更深度的网络可以抽象出表达能力更强的特征,进而获得更强的分类能力.在深度网络中,随之网络深度的增加,每层输出的特征图分辨率主要是高和宽越来越小,而深度逐渐增加. 深度的增加理论上能够提升网络的表达能力,但是对于优化来说就会产生梯度消失的问题.在深度网络中,反向传播时,梯度从输出端向数据端逐层传播,传播过程中,梯度的累乘使得近数据段接近0值,使得网络的训练失效. 为了解决梯度消失问题,可

  • pytorch教程实现mnist手写数字识别代码示例

    目录 1.构建网络 2.编写训练代码 3.编写测试代码 4.指导程序train和test 5.完整代码 1.构建网络 nn.Moudle是pytorch官方指定的编写Net模块,在init函数中添加需要使用的层,在foeword中定义网络流向. 下面详细解释各层: conv1层:输入channel = 1 ,输出chanael = 10,滤波器5*5 maxpooling = 2*2 conv2层:输入channel = 10 ,输出chanael = 20,滤波器5*5, dropout ma

  • pytorch教程resnet.py的实现文件源码分析

    目录 调用pytorch内置的模型的方法 解读模型源码Resnet.py 包含的库文件 该库定义了6种Resnet的网络结构 每种网络都有训练好的可以直接用的.pth参数文件 Resnet中大多使用3*3的卷积定义如下 如何定义不同大小的Resnet网络 定义Resnet18 定义Resnet34 Resnet类 网络的forward过程 残差Block连接是如何实现的 调用pytorch内置的模型的方法 import torchvision model = torchvision.models

  • Pytorch教程内置模型源码实现

    翻译自 https://pytorch.org/docs/stable/torchvision/models.html 主要讲解了torchvision.models的使用 torchvision.models torchvision.models中包含了如下模型 AlexNet VGG ResNet SqueezeNet DenseNet Inception v3 随机初始化模型 import torchvision.models as models resnet18 = models.res

  • PHP入门教程之操作符与控制结构流程详解

    本文实例讲述了PHP入门教程之操作符与控制结构流程.分享给大家供大家参考,具体如下: Demo1.php <?php $username = "chaoyv"; echo "His name is $username !"; $username2 = "吴者然"; echo "His name is $username2 ! "; echo "<br/>"; echo "His

  • 使用Pytorch训练two-head网络的操作

    之前有写过一篇如何使用Pytorch实现two-head(多输出)模型 在那篇文章里,基本把two-head网络以及构建讲清楚了(如果不清楚请先移步至那一篇博文). 但是我后来发现之前的训练方法貌似有些问题. 以前的训练方法: 之前是把两个head分开进行训练的,因此每一轮训练先要对一个batch的数据进行划分,然后再分别训练两个头.代码如下: f_out_y0, _ = net(x0) _, f_out_y1 = net(x1) #实例化损失函数 criterion0 = Loss() cri

随机推荐