pytorch中的卷积和池化计算方式详解

TensorFlow里面的padding只有两个选项也就是valid和same

pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0

所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小;而nn输出大小可以通过padding进行改变

nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False):
"""
Parameters:
  kernel_size – the size of the window to take a max over
  stride – the stride of the window. 默认值是kernel_size
  padding – implicit zero padding to be added on both side,默认值是0
  dilation – a parameter that controls the stride of elements in the window,默认值是1
  return_indices – if True, will return the max indices along with the outputs. Useful when Unpooling later
  ceil_mode – when True, will use ceil instead of floor to compute the output shape,向上取整和向下取整,默认是向下取整
"""

不一样的地方在于:第一点,步长stride默认值,上面默认和设定的kernel_size一样,下面默认是1;第二点,输出通道的不一样,上面的输出通道和输入通道是一样的也就是没有改变特征图的数目,下面改变特征图的数目为out_channels

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
    pass
"""
Parameters:
  in_channels (int) – Number of channels in the input image
  out_channels (int) – Number of channels produced by the convolution
  kernel_size (int or tuple) – Size of the convolving kernel
  stride (int or tuple, optional) – Stride of the convolution. Default: 1,默认是1
  padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
  dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
  groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  bias (bool, optional) – If True, adds a learnable bias to the output. Default: True
"""

第三点不一样是卷积有一个参数groups,将特征图分开给不同的卷积进行操作然后再整合到一起,xception就是利用这一个。

"""
At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups= in_channels, each input channel is convolved with its own set of filters (of size ⌊out_channelsin_channels⌋
).
"""

pytorch AvgPool2d函数

class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0,
             ceil_mode=False, count_include_pad=True):
  pass
"""
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
"""

shape的计算公式,在(h,w)位置处的输出值的计算。

pytorch中的F.avg_pool1d()平均池化操作作用于一维,input 的维度是三维比如[2,2,7]。F.avg_pool1d()中核size是3,步长是2表示每三个数取平均,每隔两个数取一次.比如[1,3,3,4,5,6,7]安照3个数取均值,两步取一次,那么结果就是[ 2.3333 ,4 ,6 ],也就是核是一维的,也只作用于一个维度。按照池化操作计算公式input size为[2,2,7],kernel size为3,步长为2,则输出维度计算(7-3)/2+1=3所以输出维度是[2,2,3],这与输出结果是一致的。

pytorch中的F.avg_pool2d(),input 是维度是4维如[2,2,4,4],表示这里批量数是2也就是两张图像,这里通道数量是2,图像是size 是4*4的.核size是(2,2),步长是(2,2)表示被核覆盖的数取平均,横向纵向的步长都是2.那么核是二维的,所以取均值时也是覆盖二维取的。输出中第一个1.5的计算是:(1+2+1+2)/4=1.5.表示第一张图像左上角的四个像素点的均值。按照池化操作计算公式input size为[2,2,4,4],kernel size为2*2,步长为2,则输出维度计算(4-2)/2+1=2所以输出维度是[2,2,2,2],这与输出结果是一致的。

Conv3d函数

class torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1,
           padding=0, dilation=1, groups=1, bias=True):
  pass
"""
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
Shape:
    - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
"""
  C_out = out_channels

以上这篇pytorch中的卷积和池化计算方式详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch实现各种2d卷积示例

    普通卷积 使用nn.Conv2d(),一般还会接上BN和ReLu 参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑) class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( n

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • pytorch AvgPool2d函数使用详解

    我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3

  • PyTorch中permute的用法详解

    permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # --> torch.Size([1, 2, 3]) permuted=unpermuted.permute(

  • pytorch中的卷积和池化计算方式详解

    TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non

  • 对Pytorch中Tensor的各种池化操作解析

    AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch.ones(2,3,4) >>> a[0,1,2] = 0 >>>> a tensor([[[1., 1., 1., 1.], [1., 1., 0., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1.,

  • keras中的卷积层&池化层的用法

    卷积层 创建卷积层 首先导入keras中的模块 from keras.layers import Conv2D 卷积层的格式及参数: Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape) filters: 过滤器数量 kernel_size:指定卷积窗口的高和宽的数字 strides: 卷积stride,如果不指定任何值,则strides设为1 padding: 选项包括'valid'和'sa

  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten

  • pytorch中的nn.ZeroPad2d()零填充函数实例详解

    在卷积神经网络中,有使用设置padding的参数,配合卷积步长,可以使得卷积后的特征图尺寸大小不发生改变,那么在手动实现图片或特征图的边界零填充时,常用的函数是nn.ZeroPad2d(),可以指定tensor的四个方向上的填充,比如左边添加1dim.右边添加2dim.上边添加3dim.下边添加4dim,即指定paddin参数为(1,2,3,4),本文中代码设置的是(3,4,5,6)如下: import torch.nn as nn import cv2 import torchvision f

  • pytorch中torch.max和Tensor.view函数用法详解

    torch.max() 1. torch.max()简单来说是返回一个tensor中的最大值. 例如: >>> si=torch.randn(4,5) >>> print(si) tensor([[ 1.1659, -1.5195, 0.0455, 1.7610, -0.2064], [-0.3443, 2.0483, 0.6303, 0.9475, 0.4364], [-1.5268, -1.0833, 1.6847, 0.0145, -0.2088], [-0.86

  • 关于pytorch中全连接神经网络搭建两种模式详解

    pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式: import torch import torch.nn as nn first: class NN(nn.Module): def __init__(self): super(NN,self).__init__() self.model=nn.Sequential( nn.Linear(30,40), nn.ReLU(), nn.Linear(40,60), nn.Tanh(), nn.Linear(60,10), n

  • PyTorch中torch.tensor与torch.Tensor的区别详解

    PyTorch最近几年可谓大火.相比于TensorFlow,PyTorch对于Python初学者更为友好,更易上手. 众所周知,numpy作为Python中数据分析的专业第三方库,比Python自带的Math库速度更快.同样的,在PyTorch中,有一个类似于numpy的库,称为Tensor.Tensor自称为神经网络界的numpy. 一.numpy和Tensor二者对比 对比项 numpy Tensor 相同点 可以定义多维数组,进行切片.改变维度.数学运算等 可以定义多维数组,进行切片.改变

  • linux下umask命令用途原理和计算方式详解

    目录 umask umask用途 原理 1. umask值 2. 文件目录权限最大值 3. 常规计算 4. 严谨计算 umask值修改 1. 临时生效(当前会话) 2. 永久生效 总结 umask umask用途 umask令新建文件和目录拥有默认权限. 可以看到root创建的目录是755,文件是644 [root@zaishu zaishu]# touch test.txt [root@zaishu zaishu]# mkdir test [root@zaishu zaishu]# ls -l

  • Pytorch中torch.flatten()和torch.nn.Flatten()实例详解

    torch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化. import torch x=torch.randn(2,4,2) print(x) z=torch.flatten(x) print(z) w=torch.flatten(x,1) print(w) 输出为: tensor([[[-0.9814, 0.8251], [ 0.8197, -1.0426], [-

随机推荐