numpy实现神经网络反向传播算法的步骤

一、任务

实现一个4 层的全连接网络实现二分类任务,网络输入节点数为2,隐藏层的节点数设计为:25,50,25,输出层2 个节点,分别表示属于类别1 的概率和类别2 的概率,如图所示。我们并没有采用Softmax 函数将网络输出概率值之和进行约束,而是直接利用均方差误差函数计算与One-hot 编码的真实标签之间的误差,所有的网络激活函数全部采用Sigmoid 函数,这些设计都是为了能直接利用梯度推导公式。

二、数据集

通过scikit-learn 库提供的便捷工具生成2000 个线性不可分的2 分类数据集,数据的特征长度为2,采样出的数据分布如图 所示,所有的红色点为一类,所有的蓝色点为一类,可以看到数据的分布呈月牙状,并且是是线性不可分的,无法用线性网络获得较好效果。为了测试网络的性能,按照7: 3比例切分训练集和测试集,其中2000 ∗ 0 3 =600个样本点用于测试,不参与训练,剩下的1400 个点用于网络的训练。

import matplotlib.pyplot as plt
import seaborn as sns #要注意的是一旦导入了seaborn,matplotlib的默认作图风格就会被覆盖成seaborn的格式
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
N_SAMPLES = 2000 # 采样点数
TEST_SIZE = 0.3 # 测试数量比率
# 利用工具函数直接生成数据集
X, y = make_moons(n_samples = N_SAMPLES, noise=0.2, random_state=100)
# 将2000 个点按着7:3 分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=TEST_SIZE, random_state=42)
print(X.shape, y.shape)
# 绘制数据集的分布,X 为2D 坐标,y 为数据点的标签
def make_plot(X, y, plot_name, file_name=None, XX=None, YY=None, preds=None,dark=False):
  if (dark):
    plt.style.use('dark_background')
  else:
    sns.set_style("whitegrid")
  plt.figure(figsize=(16,12))
  axes = plt.gca()
  axes.set(xlabel="$x_1$", ylabel="$x_2$")
  plt.title(plot_name, fontsize=30)
  plt.subplots_adjust(left=0.20)
  plt.subplots_adjust(right=0.80)
  if(XX is not None and YY is not None and preds is not None):
    plt.contourf(XX, YY, preds.reshape(XX.shape), 25, alpha = 1,cmap=plt.cm.Spectral)
    plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5],cmap="Greys", vmin=0, vmax=.6)
  # 绘制散点图,根据标签区分颜色
  plt.scatter(X[:, 0], X[:, 1], c=y.ravel(), s=40, cmap=plt.cm.Spectral,edgecolors='none')
  plt.savefig('dataset.svg')
  plt.close()
# 调用make_plot 函数绘制数据的分布,其中X 为2D 坐标,y 为标签
make_plot(X, y, "Classification Dataset Visualization ")
plt.show()

三、网络层

通过新建类Layer 实现一个网络层,需要传入网络层的数据节点数,输出节点数,激活函数类型等参数,权值weights 和偏置张量bias 在初始化时根据输入、输出节点数自动生成并初始化:

class Layer:
  # 全连接网络层
  def __init__(self, n_input, n_neurons, activation=None, weights=None,
         bias=None):
    """
    :param int n_input: 输入节点数
    :param int n_neurons: 输出节点数
    :param str activation: 激活函数类型
    :param weights: 权值张量,默认类内部生成
    :param bias: 偏置,默认类内部生成
    """

    # 通过正态分布初始化网络权值,初始化非常重要,不合适的初始化将导致网络不收敛
    self.weights = weights if weights is not None else
    np.random.randn(n_input, n_neurons) * np.sqrt(1 / n_neurons)
    self.bias = bias if bias is not None else np.random.rand(n_neurons) *0.1
    self.activation = activation # 激活函数类型,如'sigmoid'
    self.last_activation = None # 激活函数的输出值o
    self.error = None # 用于计算当前层的delta 变量的中间变量
    self.delta = None # 记录当前层的delta 变量,用于计算梯度

  def activate(self, x):
    # 前向传播
    r = np.dot(x, self.weights) + self.bias # X@W+b
    # 通过激活函数,得到全连接层的输出o
    self.last_activation = self._apply_activation(r)
    return self.last_activation
  # 其中self._apply_activation 实现了不同的激活函数的前向计算过程:
  def _apply_activation(self, r):

    # 计算激活函数的输出
    if self.activation is None:
      return r # 无激活函数,直接返回
    # ReLU 激活函数
    elif self.activation == 'relu':
      return np.maximum(r, 0)
    # tanh
    elif self.activation == 'tanh':
      return np.tanh(r)
    # sigmoid
    elif self.activation == 'sigmoid':
      return 1 / (1 + np.exp(-r))
    return r

  # 针对于不同的激活函数,它们的导数计算实现如下:
  def apply_activation_derivative(self, r):

    # 计算激活函数的导数
    # 无激活函数,导数为1
    if self.activation is None:
      return np.ones_like(r)
    # ReLU 函数的导数实现
    elif self.activation == 'relu':
      grad = np.array(r, copy=True)
      grad[r > 0] = 1.
      grad[r <= 0] = 0.
      return grad
    # tanh 函数的导数实现
    elif self.activation == 'tanh':
      return 1 - r ** 2
    # Sigmoid 函数的导数实现
    elif self.activation == 'sigmoid':
      return r * (1 - r)
    return r

四、网络模型

完成单层网络类后,再实现网络模型的类NeuralNetwork,它内部维护各层的网络层Layer 类对象,可以通过add_layer 函数追加网络层,实现如下:

class NeuralNetwork:
  # 神经网络大类
  def __init__(self):
    self._layers = [] # 网络层对象列表
  def add_layer(self, layer):
    # 追加网络层
    self._layers.append(layer)
  # 网络的前向传播只需要循环调用个网络层对象的前向计算函数即可
  def feed_forward(self, X):
    # 前向传播
    for layer in self._layers:
      # 依次通过各个网络层
      X = layer.activate(X)
    return X

  #网络模型的反向传播实现稍复杂,需要从最末层开始,计算每层的𝛿变量,根据我们
  #推导的梯度公式,将计算出的𝛿变量存储在Layer类的delta变量中
  # 因此,在backpropagation 函数中,反向计算每层的𝛿变量,并根据梯度公式计算每层参数的梯度值,
  # 按着梯度下降算法完成一次参数的更新。
  def backpropagation(self, X, y, learning_rate):

    # 反向传播算法实现
    # 前向计算,得到输出值
    output = self.feed_forward(X)
    for i in reversed(range(len(self._layers))): # 反向循环
      layer = self._layers[i] # 得到当前层对象
      # 如果是输出层
      if layer == self._layers[-1]: # 对于输出层
        layer.error = y - output # 计算2 分类任务的均方差的导数
      # 关键步骤:计算最后一层的delta,参考输出层的梯度公式
        layer.delta = layer.error * layer.apply_activation_derivative(output)

      else: # 如果是隐藏层
        next_layer = self._layers[i + 1] # 得到下一层对象
        layer.error = np.dot(next_layer.weights, next_layer.delta)
        # 关键步骤:计算隐藏层的delta,参考隐藏层的梯度公式
        layer.delta = layer.error * layer.apply_activation_derivative(layer.last_activation)

  # 在反向计算完每层的𝛿变量后,只需要按着式计算每层的梯度,并更新网络参数即可。
  # 由于代码中的delta 计算的是−𝛿,因此更新时使用了加号。
        # 循环更新权值
    for i in range(len(self._layers)):
      layer = self._layers[i]
    # o_i 为上一网络层的输出
      o_i = np.atleast_2d(X if i == 0 else self._layers[i-1].last_activation)
      # 梯度下降算法,delta 是公式中的负数,故这里用加号
      layer.weights += layer.delta * o_i.T * learning_rate

  def train(self, X_train, X_test, y_train, y_test, learning_rate,max_epochs):
    # 网络训练函数
    # one-hot 编码
    y_onehot = np.zeros((y_train.shape[0], 2))
    y_onehot[np.arange(y_train.shape[0]), y_train] = 1
    mses = []
    for i in range(max_epochs): # 训练1000 个epoch
      for j in range(len(X_train)): # 一次训练一个样本
        self.backpropagation(X_train[j], y_onehot[j], learning_rate)
      if i % 10 == 0:
        # 打印出MSE Loss
        mse = np.mean(np.square(y_onehot - self.feed_forward(X_train)))
        mses.append(mse)
        print('Epoch: #%s, MSE: %f' % (i, float(mse)))
        # 统计并打印准确率
        print('Accuracy: %.2f%%' % (self.accuracy(self.predict(X_test),y_test.flatten()) * 100))
    return mses

  def accuracy(self,y_pre,y_true):
    return np.mean((np.argmax(y_pre, axis=1) == y_true))

  def predict(self,X_test):
    return self.feed_forward(X_test)

五、实例化NeuralNetwork类,进行训练

nn = NeuralNetwork() # 实例化网络类
nn.add_layer(Layer(2, 25, 'sigmoid')) # 隐藏层1, 2=>25
nn.add_layer(Layer(25, 50, 'sigmoid')) # 隐藏层2, 25=>50
nn.add_layer(Layer(50, 25, 'sigmoid')) # 隐藏层3, 50=>25
nn.add_layer(Layer(25, 2, 'sigmoid')) # 输出层, 25=>2
learning_rate = 0.01
max_epochs = 1000
nn.train(X_train, X_test, y_train, y_test, learning_rate,max_epochs)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python使用numpy实现BP神经网络

    本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x.BP神经网络的具体原理此处不再介绍. import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in i

  • 纯用NumPy实现神经网络的示例代码

    摘要: 纯NumPy代码从头实现简单的神经网络. Keras.TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型.前不久,我曾写过一篇文章,对神经网络是如何工作的进行了简单的讲解.该文章侧重于对神经网络中运用到的数学理论知识进行详解.本文将利用NumPy实现简单的神经网络,在实战中对其进行深层次剖析.最后,我们会利用分类问题对模型进行测试,并与Keras所构建的神经网络模型进行性能的比较. Note:源码可在我的GitHub中查看. 在正式开始之前,需要先对所

  • Python基于numpy灵活定义神经网络结构的方法

    本文实例讲述了Python基于numpy灵活定义神经网络结构的方法.分享给大家供大家参考,具体如下: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能! 一.用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测 说明: 输入层节点数目:3 隐藏层节点数目:4 输出层节点数目:2 2).定义一个五层神经网络:

  • numpy实现神经网络反向传播算法的步骤

    一.任务 实现一个4 层的全连接网络实现二分类任务,网络输入节点数为2,隐藏层的节点数设计为:25,50,25,输出层2 个节点,分别表示属于类别1 的概率和类别2 的概率,如图所示.我们并没有采用Softmax 函数将网络输出概率值之和进行约束,而是直接利用均方差误差函数计算与One-hot 编码的真实标签之间的误差,所有的网络激活函数全部采用Sigmoid 函数,这些设计都是为了能直接利用梯度推导公式. 二.数据集 通过scikit-learn 库提供的便捷工具生成2000 个线性不可分的2

  • Python实现的人工神经网络算法示例【基于反向传播算法】

    本文实例讲述了Python实现的人工神经网络算法.分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行. 本程序实现了<机器学习>书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记. 在本程序中,目标函数是由一个输入x和两个输出y组成, x是在范围[-3.14, 3.14]之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1. 随机生成一万份训练样例,经过网络的学

  • 吴恩达机器学习练习:神经网络(反向传播)

    1 Neural Networks 神经网络 1.1 Visualizing the data 可视化数据 这部分我们随机选取100个样本并可视化.训练集共有5000个训练样本,每个样本是20*20像素的数字的灰度图像.每个像素代表一个浮点数,表示该位置的灰度强度.20×20的像素网格被展开成一个400维的向量.在我们的数据矩阵X中,每一个样本都变成了一行,这给了我们一个5000×400矩阵X,每一行都是一个手写数字图像的训练样本. import numpy as np import matpl

  • python里反向传播算法详解

    反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步--最大下降的方向,也就是将我们带到成本函数的局部最小值的方向. 图示演示: 反向传播算法中Sigmoid函数代码演示: # 实现 sigmoid 函数 return 1 / (1 + np.exp(-x))

  • Python反向传播实现线性回归步骤详细讲解

    目录 1. 导入包 2. 生成数据 3. 训练数据 4. 绘制图像 5. 代码 1. 导入包 我们这次的任务是随机生成一些离散的点,然后用直线(y = w *x + b )去拟合 首先看一下我们需要导入的包有 torch 包为我们生成张量,可以使用反向传播 matplotlib.pyplot 包帮助我们绘制曲线,实现可视化 2. 生成数据 这里我们通过rand随机生成数据,因为生成的数据在0~1之间,这里我们扩大10倍. 我们设置的batch_size,也就是数据的个数为20个,所以这里会产生维

  • TensorFlow如何实现反向传播

    使用TensorFlow的一个优势是,它可以维护操作状态和基于反向传播自动地更新模型变量. TensorFlow通过计算图来更新变量和最小化损失函数来反向传播误差的.这步将通过声明优化函数(optimization function)来实现.一旦声明好优化函数,TensorFlow将通过它在所有的计算图中解决反向传播的项.当我们传入数据,最小化损失函数,TensorFlow会在计算图中根据状态相应的调节变量. 回归算法的例子从均值为1.标准差为0.1的正态分布中抽样随机数,然后乘以变量A,损失函

  • PyTorch梯度下降反向传播

    前言: 反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向 如题: 意思是利用这个二次模型来预测数据,减小损失函数(MSE)的值. 代码如下: import torch import matplo

  • 反向传播BP学习算法Gradient Descent的推导过程

    目录 1.定义Loss Function 2.Gradient Descent 3.求偏微分 4.反向传播 5.总结 BP算法是适用于多层神经网络的一种算法,它是建立在梯度下降法的基础上的.本文着重推导怎样利用梯度下降法来minimise Loss Function. 给出多层神经网络的示意图: 1.定义Loss Function 每一个输出都对应一个损失函数L,将所有L加起来就是total loss. 那么每一个L该如何定义呢?这里还是采用了交叉熵,如下所示: 最终Total Loss的表达式

  • numpy创建神经网络框架

    目录 神经网络框架使用方法及设计思想 项目介绍 框架介绍 神经网络框架使用方法及设计思想 在框自己手写架上基本模仿pytorch,用以学习神经网络的基本算法,如前向传播.反向传播.各种层.各种激活函数 采用面向对象的思想进行编程,思路较为清晰 想要神经网络的同学们可以参考一下 代码大体框架较为清晰,但不否认存在丑陋的部分,以及对于pytorch的拙劣模仿 项目介绍 MINST_recognition: 手写数字识别,使用MINST数据集 训练30轮可以达到93%准确度,训练500轮左右达到95%

随机推荐