Python matplotlib 绘制双Y轴曲线图的示例代码

Matplotlib简介

Matplotlib是非常强大的python画图工具
Matplotlib可以画图线图、散点图、等高线图、条形图、柱形图、3D图形、图形动画等。

Matplotlib安装

pip3 install matplotlib#python3

双X轴的
可以理解为共享y轴

ax1=ax.twiny()
ax1=plt.twiny()

双Y轴的
可以理解为共享x轴

ax1=ax.twinx()
ax1=plt.twinx()

自动生成一个例子

x = np.arange(0., np.e, 0.01)
y1 = np.exp(-x)
y2 = np.log(x)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(x, y1)
ax1.set_ylabel('Y values for exp(-x)')
ax1.set_title("Double Y axis")
ax2 = ax1.twinx() # this is the important function
ax2.plot(x, y2, 'r')
ax2.set_xlim([0, np.e])
ax2.set_ylabel('Y values for ln(x)')
ax2.set_xlabel('Same X for both exp(-x) and ln(x)')
plt.show()

例子:画了一个双y轴坐标的图表

# -*- coding: utf-8 -*-

#调用包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

#读取文件
io=r'E:\工作\专项\白骑士数据验证\白骑士数据汇总表.xlsx'
yinka=pd.read_excel(io,sheet_name='YINKA_sample')
bqs=pd.read_excel(io,sheet_name='BQS_result')
yinka_bqs=pd.merge(yinka,bqs,left_on='no',right_on='no',how='inner')

#绘图
fig,ax=plt.subplots(1,1,figsize=(20, 300))
ax.grid()     #画网格
x=total.index-1
#为什么+1,因为对不齐,所以使用时根据情况编写
y=total['var1']
ax.plot(x,y,'k--o',alpha=0.5) #画折线图
ax.set_xlim([0,16])
#设置x轴的取值范围   这个可以让x轴与y轴的起点一致
ax.set_xticks(np.arange(0,16)) #设置x轴的刻度范围
ax.set_xticklabels(np.arange(0,16),rotation=30)
#设置x轴上的刻度

ax.set_ylim([0,1800])   #同理y轴数值范围
ax.set_yticks(range(0,1800,300))#设置y轴的刻度范围
ax.set_yticklabels(range(0,1800,300))#设置y轴上的刻度

ax.legend(loc='upper left')  #设置ax子图的图例(legend)
#新知识点
for a,b in zip(x,y):   #设置注释 zip函数是对应关系
 ax.text(a,b,b,ha='center',va='bottom',fontsize=15)
#重点
ax1=ax.twinx()
#这个是能够实现双y轴的重点,共享x轴;还有一种是双x轴的图表换成ax.twiny()
y1=total[['adopt','reject']]
y1.plot.bar(ax=ax1,alpha=0.5)
#这个是matplotlib中条形图的绘制方法,如果使用seaborn绘制方法使用sns.barplot()函数,需要调整很多细节
#这里只设置了y轴的刻度,x轴的刻度设置了一下偶尔会出现失败,值得注意的是要将数据对齐
ax1.set_ylim([0,1800])
ax1.set_yticks(range(0,1800,300))
ax1.set_yticklabels(range(0,1800,300))
for e,f,w in zip(data_.index,data_[0],data_[1]):
 ax1.text(e-1,f,f,ha='center',va='bottom',fontsize=10,color='b')
 ax1.text(e-1,w,w,ha='center',va='bottom',fontsize=10,color='g')
ax1.legend(loc='best')
plt.show()   #养成习惯这个最好写一下#
#保存图片
plt.savefig('path') #图表输出到本地

结果显示:

总结

到此这篇关于Python matplotlib 绘制双Y轴曲线图的文章就介绍到这了,更多相关Python matplotlib 曲线图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python matlibplot绘制多条曲线图

    这里我利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #这里导入你自己的数据 #...... #...... #x_axix,train_pn_dis这些都是长度相同的list() #开始画图 sub_axix = filter(lambda

  • 用python建立两个Y轴的XY曲线图方法

    想把python提取出来的 加载点反力和某个单元的应力画在同一个XY曲线图上,由于两者数量级差太远,故而需要建立有两个Y轴的XY曲线图. 效果为: 代码如下: #创建Quatype,作为标记,用于判断是否需要创建多条Y轴(或X轴) #label 会变成默认的坐标轴名 type 是一个枚举,"type"相同的合并成同一个轴 Quatype1=xyPlot.QuantityType(label='应力' , type=STRESS) Quatype2=xyPlot.QuantityType

  • python画蝴蝶曲线图的实例

    蝴蝶曲线是由Temple H·Fay发现的可用极坐标函数表示的蝴蝶曲线. 由于此曲线优美, 因此就想把它作为博客favicon.ico,这里我使用pytho matplotlib.pyplot包来绘制需要的蝴蝶曲线图. 先看下漂亮的蝴蝶曲线吧. 1.首先我们需要确定蝴蝶曲线的函数表达 2.选择python里面的matplotlib.pyplot作为画图工具 1.首先导入python包 import numpy as np import matplotlib.pyplot as plt 2.设置个

  • Python绘制3d螺旋曲线图实例代码

    Line plots Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用z的方向 其他的参数:plot() Python代码: import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as

  • python matplotlib实现双Y轴的实例

    如下所示: import matplotlib.pyplot as plt import numpy as np x = np.arange(0., np.e, 0.01) y1 = np.exp(-x) y2 = np.log(x) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x, y1,'r',label="right"); ax1.legend(loc=1) ax1.set_ylabel('Y values for

  • Python matplotlib 绘制双Y轴曲线图的示例代码

    Matplotlib简介 Matplotlib是非常强大的python画图工具 Matplotlib可以画图线图.散点图.等高线图.条形图.柱形图.3D图形.图形动画等. Matplotlib安装 pip3 install matplotlib#python3 双X轴的 可以理解为共享y轴 ax1=ax.twiny() ax1=plt.twiny() 双Y轴的 可以理解为共享x轴 ax1=ax.twinx() ax1=plt.twinx() 自动生成一个例子 x = np.arange(0.,

  • Python+Matplotlib绘制双y轴图像的示例代码

    目录 双Y轴图简介 实现思路 实现代码 样式一 样式二 双Y轴图简介 双Y轴图顾名思义就是在一个图里有两个Y轴.这种图形主要用来展示两个因变量和一个自变量的关系并且两个因变量的数值单位还不同.如我们想要展示不同月份公司销业绩以及成本的变化情况这时就可以用双Y轴图来展示.(因变量销量和成本具有不同的单位). 实现思路 绘制双y轴的思想,也是用到了matplotlib面向对象绘图的思想.在不指定位置的情况下,在一个画布上创建出两个坐标系,其中第一个坐标系正常创建,第二个坐标系则使用专有的twinx(

  • python画双y轴图像的示例代码

    很多时候可能需要在一个图中画出多条函数图像,但是可能y轴的物理含义不一样,或是数值范围相差较大,此时就需要双y轴. matplotlib和seaborn都可以画双y轴图像. 一个例子: import seaborn as sns import matplotlib.pyplot as plt # ax1 for KDE, ax2 for CDF f, ax1 = plt.subplots() ax1.grid(True) # ax1.set_ylim(0, 1) ax1.set_ylabel('

  • python绘制双Y轴折线图以及单Y轴双变量柱状图的实例

    近来实验室的师姐要发论文,由于论文交稿时间临近,有一些杂活儿需要处理,作为实验室资历最浅的一批,我这个实习生也就责无旁贷地帮忙当个下手.今天师姐派了一个小活,具体要求是: 给一些训练模型的迭代次数,训练精度的数据,让我做成图表形式展示出来,一方面帮助检查模型训练时的不足,另一方面来看样本数目和预测精度之间的联系,数据具体格式如下: Iteration 1500 label train test right acc 12 143 24 24 1.0 160 92 16 15 0.9375 100

  • 基于python的matplotlib制作双Y轴图

    一.函数介绍 函数:twin()函数 含义:表示共享x轴,共享表示的就是x轴使用同一刻度 二.实际应用 2.1 实验数据展示 数据表的名称:600001SH.xlsx 2.2 代码实现: 文章里使用到了Subplot()函数 # 导入相关数据包 import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体 plt.rcParams['axes.unic

  • Python实现双X轴双Y轴绘图的示例详解

    诈尸人口回归.这一年忙着灌水忙到头都掉了,最近在女朋友的提醒下终于想起来博客的账号密码,正好今天灌水的时候需要画一个双X轴双Y轴的图,研究了两小时终于用Py实现了.找资料的过程中没有发现有系统的文章,反正代码都整理出来了,我决定顺势水一篇. 目前找到的plt实现双X轴双Y轴绘图方式有两种: 使用fig.add_subplot方式将两对坐标系叠加在一个fig上实现双X轴双Y轴效果.所有调整均可完美实现,推荐该方式 通过axes.twinx().twiny()方式实现双X轴双Y轴图形绘制.问题在于对

  • matplotlib 双y轴绘制及合并图例的实现代码

    Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式. Matplotlib 可以用来绘制各种静态,动态,交互式的图表. Matplotlib 是一个非常强大的 Python 画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来. Matplotlib 可以绘制线图.散点图.等高线图.条形图.柱状图.3D 图形.甚至是图形动画等等. 下面看下matplotlib 双y轴绘制及合并图例. 1.双y轴绘制 关键函数:twinx(

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

随机推荐