opencv 查找连通区域 最大面积实例

今天在弄一个查找连通的最大面积的问题。

要把图像弄成黑底,白字,这样才可以正确找到。

然后调用下边的方法:

RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界

#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace std;

int main( int argc, char** argv )
{
  Mat src = imread( argv[1] );

  int largest_area=0;
  int largest_contour_index=0;
  Rect bounding_rect;

  Mat thr;
  cvtColor( src, thr, COLOR_BGR2GRAY ); //Convert to gray
  threshold( thr, thr, 125, 255, THRESH_BINARY ); //Threshold the gray
  bitwise_not(thr,thr); //这里先变反转颜色

  vector<vector<Point> > contours; // Vector for storing contours

  findContours( thr, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image

  for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour.
  {
    double area = contourArea( contours[i] ); // Find the area of contour

    if( area > largest_area )
    {
      largest_area = area;
      largest_contour_index = i;        //Store the index of largest contour
      bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour
    }
  }

  drawContours( src, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index.

  imshow( "result", src );
  waitKey();
  return 0;
}

方法二: connectedComponentsWithStats

 std::pair< int , int > MaxAreaFromSource(Mat srcImage, Mat &dstImage, int index)
{
  /*
  vector<vector<cv::Point> > contours; // Vector for storing contours

  int largest_area=0;
  size_t largest_contour_index=0;
  Rect bounding_rect;

  findContours( srcImage, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image

  for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour.
  {
    double area = contourArea( contours[i] ); // Find the area of contour

    if( area > largest_area )
    {
      largest_area = area;
      largest_contour_index = i;        //Store the index of largest contour
      bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour
    }
  }

  Mat dst;
  cvtColor(srcImage, dst, CV_GRAY2RGB);
  drawContours( dst, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index.
  imshow( "result", dst );
  waitKey();

  printf("%%%%%%%%%%%max area:%d\n", largest_area);
  return make_pair( largest_area, index);
  */

  cv::Mat img_bool, labels, stats, centroids, img_color, img_gray;

  //连通域计算
  int nccomps = cv::connectedComponentsWithStats (
                          srcImage, //二值图像
                          labels,   //和原图一样大的标记图
                          stats, //nccomps×5的矩阵 表示每个连通区域的外接矩形和面积(pixel)
                          centroids //nccomps×2的矩阵 表示每个连通区域的质心
                          );
  //cv::imshow("labels", labels);
  //cv::waitKey();

  vector<cv::Vec3b> colors(nccomps);
  colors[0] = cv::Vec3b(0,0,0); // background pixels remain black.

   printf( "index:%d==================\n",index );

  vector< int >vec_width,vec_area,vec_height;

  for(int label = 1; label < nccomps; ++label)
  {
    colors[label] = cv::Vec3b( (std::rand()&255), (std::rand()&255), (std::rand()&255) );
    std::cout << "Component "<< label << std::endl;
    std::cout << "CC_STAT_LEFT  = " << stats.at<int>(label,cv::CC_STAT_LEFT) << std::endl;
    std::cout << "CC_STAT_TOP  = " << stats.at<int>(label,cv::CC_STAT_TOP) << std::endl;
    std::cout << "CC_STAT_WIDTH = " << stats.at<int>(label,cv::CC_STAT_WIDTH) << std::endl;
    std::cout << "CC_STAT_HEIGHT = " << stats.at<int>(label,cv::CC_STAT_HEIGHT) << std::endl;
    std::cout << "CC_STAT_AREA  = " << stats.at<int>(label,cv::CC_STAT_AREA) << std::endl;
    std::cout << "CENTER  = (" << centroids.at<double>(label, 0) <<","<< centroids.at<double>(label, 1) << ")"<< std::endl << std::endl;

    int area = stats.at<int>(label,cv::CC_STAT_AREA);
    int left = stats.at<int>(label,cv::CC_STAT_LEFT);
    int top = stats.at<int>(label,cv::CC_STAT_TOP);
    int width = stats.at<int>(label,cv::CC_STAT_WIDTH);
    int height = stats.at<int>(label,cv::CC_STAT_HEIGHT);

    vec_area.push_back(area);
    vec_width.push_back(width);
    vec_height.push_back(height);
  }

  vector<int>::iterator bigwidth = std::max_element(std::begin(vec_width), std::end(vec_width));
  vector<int>::iterator bigheight = std::max_element(std::begin(vec_height), std::end(vec_height));
  vector<int>::iterator bigarea = std::max_element(std::begin(vec_area), std::end(vec_area));

  //printf( "area:%d------------width:%d height:%d \n", *bigarea, *bigwidth, *bigheight );

  //按照label值,对不同的连通域进行着色
  img_color = cv::Mat::zeros(srcImage.size(), CV_8UC3);
  for( int y = 0; y < img_color.rows; y++ )
    for( int x = 0; x < img_color.cols; x++ )
    {
      int label = labels.at<int>(y, x);
      CV_Assert(0 <= label && label <= nccomps);
      img_color.at<cv::Vec3b>(y, x) = colors[label];
    }

  cv::imshow("color", img_color);
  cv::waitKey();

  return make_pair( *bigarea , index );
}

我先用这个函数实现了一下,效果正确,还是opencv demo 是正确的,网上找了个例子,害死我了。

说明一下:方法一 比 第二种方法 运行速度快很多哦! 这一点很重要。

以上这篇opencv 查找连通区域 最大面积实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv minAreaRect 生成最小外接矩形的方法

    使用python opencv返回点集cnt的最小外接矩形,所用函数为 cv2.minAreaRect(cnt) ,cnt是点集数组或向量(里面存放的是点的坐标),并且这个点集不定个数. 举例说明:画一个任意四边形(任意多边形都可以)的最小外接矩形,那么点集 cnt 存放的就是该四边形的4个顶点坐标(点集里面有4个点) cnt = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4]]) # 必须是array数组的形式 rect = cv2.minAreaRect(

  • Python计算不规则图形面积算法实现解析

    这篇文章主要介绍了Python计算不规则图形面积算法实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在使用网上的opencv的fillPoly填充效果非常不理想,还有类似python计算任意多边形方法也不理想的情况下,自己探索出的一种效果还不

  • Python通过OpenCV的findContours获取轮廓并切割实例

    1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T

  • opencv 查找连通区域 最大面积实例

    今天在弄一个查找连通的最大面积的问题. 要把图像弄成黑底,白字,这样才可以正确找到. 然后调用下边的方法: RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界 #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace std; int main( int a

  • Opencv提取连通区域轮廓的方法

    本文实例为大家分享了Opencv提取连通区域轮廓的具体代码,供大家参考,具体内容如下 在进行图像分割后,可能需要对感兴趣的目标区域进行提取,比较常用的方法是计算轮廓. 通过轮廓可以获得目标的一些信息: (1)目标位置 (2)目标大小(即面积) (3)目标形状(轮廓矩) 当然,轮廓不一定代表希望目标区域,阈值分割时可能造成一部分信息丢失,因此可以计算轮廓的质心坐标,再进行漫水填充. 程序中有寻找质心+填充,但效果不好,因此就不放填充后的图了. 实验结果: #include "opencv2/img

  • Opencv求取连通区域重心实例

    我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心. 步骤如下: 1)合适的阈值二值化 2)求取轮廓 3)计算重心 otsu算法求取最佳阈值 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分,otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比

  • OPENCV去除小连通区域,去除孔洞的实例讲解

    一.对于二值图,0代表黑色,255代表白色.去除小连通区域与孔洞,小连通区域用8邻域,孔洞用4邻域. 函数名字为:void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int CheckMode, int NeihborMode) CheckMode: 0代表去除黑区域,1代表去除白区域; NeihborMode:0代表4邻域,1代表8邻域; 如果去除小连通区域CheckMode=1,NeihborMode=1去除孔洞CheckM

  • 浅谈opencv自动光学检测、目标分割和检测(连通区域和findContours)

    步骤如下: 1.图片灰化: 2.中值滤波 去噪 3.求图片的光影(自动光学检测) 4.除法去光影 5.阈值操作 6.实现了三种目标检测方法 主要分两种连通区域和findContours 过程遇到了错误主要是图片忘了灰化处理,随机颜色的问题.下面代码都已经进行了解决 这是findContours的效果 下面是连通区域的结果 #include <opencv2\core\utility.hpp> #include <opencv2\imgproc.hpp> #include <o

  • php+mongodb判断坐标是否在指定多边形区域内的实例

    MongoDB是一个基于分布式文件存储的数据库,并提供创建基于地理空间的索引的能力,本文将提供使用PHP连接mongodb,判断坐标是否在指定多边形区域内的实例. 1.定义多边形区域 多边形的坐标点如下: 113.314882,23.163055 113.355845,23.167042 113.370289,23.149564 113.356779,23.129758 113.338238,23.13913 113.330979,23.124706 113.313588,23.140858 1

  • Node.js查找当前目录下文件夹实例代码

    整理文档,搜刮出Node.js查找当前目录下文件夹实例代码,稍微整理精简一下做下分享. var http = require("http"); var fs = require("fs"); var server = http.createServer(function (req,res) { //不处理收藏夹小图标 if(req.url == "/favicon.ico"){ return; } //files是文件名的数组 表示text这个文

  • java 查找list中重复数据实例详解

    java 查找list中重复数据实例详解 需求: 查找一个List集合中所有重复的数据,重复的数据可能不止一堆,比如:aa, bb, aa, bb, cc , dd, aa这样的数据.如果有重复数据,则给这些重复数据加上编号,上述数据改为:aa1, bb1, aa2, bb2, cc, dd. 算法如下: public static void same(List<String> list) { String [] indexArr ; Map<String, String> map

  • C语言输入三角形边长判断其类型并输出面积实例代码

    本文主要研究的是输入三角形边长判断其类型并输出面积,用C语言实现,具体如下. 思路:首先判断所给的三条边是否能够组成三角形,若可以组成三角形,则判断该三角形是什么类型,并求三角形的面积. 相关知识: 三角形是由同一平面内不在同一直线上的三条线段'首尾'顺次连接所组成的封闭图形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形.腰与底相等的等腰三角形即等边三角形) 不等边三角形:不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形. 等腰三角形:等腰

  • Vue cli+mui 区域滚动的实例代码

    vue cli+mui配合使用达到区域滚到的效果 ,方法如下 第一步 引入mui css js @import url("/static/mui.min.css"); JS import mui from '../../../static/mui.min.js'; 第二步 写结构 mui的区域滚动结构是这样的 <div class="mui-scroll-wrapper"> <div class="mui-scroll">

随机推荐