浅谈Python线程的同步互斥与死锁

线程间通信方法

1. 通信方法

线程间使用全局变量进行通信

    2. 共享资源争夺

共享资源:多个进程或者线程都可以操作的资源称为共享资源。对共享资源的操作代码段称为临界区。

影响 : 对共享资源的无序操作可能会带来数据的混乱,或者操作错误。此时往往需要同步互斥机制协调操作顺序。

    3. 同步互斥机制

同步 : 同步是一种协作关系,为完成操作,多进程或者线程间形成一种协调,按照必要的步骤有序执行操作。两个或两个以上的进程或线程在运行过程中协同步调,按预定的先后次序运行。比如 A 任务的运行依赖于 B 任务产生的数据。

互斥 : 互斥是一种制约关系,当一个进程或者线程占有资源时会进行加锁处理,此时其他进程线程就无法操作该资源,直到解锁后才能操作。一个公共资源同一时刻只能被一个进程或线程使用,多个进程或线程不能同时使用公共资源

线程同步互斥方法

线程Event同步

from threading import Event
e = Event() 创建线程event对象
e.wait([timeout]) 阻塞等待e被set
e.set() 设置e,使wait结束阻塞
e.clear() 使e回到未被设置状态
e.is_set() 查看当前e是否被设置

示例:

import time
import threading

event = threading.Event()

# 红绿灯
def lighter():
  count = 0
  event.set() # 刚进来的时候是绿灯
  while True:
    if 4 < count < 10:
      event.clear() # 清除设置,阻塞等待
      print("[信号灯]:红,不能通行", count)
    elif count >= 10: # 添加设置,继续执行
      event.set()
      count = 0
    else:
      event.set() # 添加设置,继续执行
      print("[信号灯]:绿灯,可以通行", count)
    time.sleep(1)
    count += 1

# 汽车
def car(name):
  while True:
    if event.is_set():
      print("{0}: 绿灯 , 走起...".format(name))
      time.sleep(1)
    else:
      print("{0}: 红灯 , 停车...".format(name))
      event.wait()
      print("{0}: 绿灯亮了 , 继续前进...".format(name))

light = threading.Thread(target=lighter, )
light.start()
car1 = threading.Thread(target=car, args=("小跑",))
car1.start()

线程锁 Lock

from threading import Lock
lock = Lock() #创建锁对象
lock.acquire() #上锁 如果lock已经上锁再调用会阻塞
lock.release() #解锁

with lock: 上锁

with代码块结束自动解锁

示例:

from threading import Thread, Lock
from time import sleep

a = b = 0
lock = Lock()

# 子线程输出a b
def value():
  while True:
    lock.acquire() # 上锁
    if a != b:
      print("a = %d,b = %d" % (a, b))
    lock.release() # 解锁

t = Thread(target=value)
t.start()

# 主线程加锁更改a b时候,子线程处理a b 时也要进行加锁,重复加锁就会阻塞等待主线程处理结束
# 同理主进程再次更改a b 时等 子进程结束才可以
while True:
  with lock: # 自动上/解锁
    a += 1
    b += 1
t.join

死锁及其处理

    1. 定义

死锁是指两个或两个以上的线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。

    2. 死锁产生条件

【互斥条件】:指线程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。

【请求和保持条件】:指线程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求线程阻塞,但又对自己已获得的其它资源保持不放。

【不剥夺条件】:指线程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放,通常CPU内存资源是可以被系统强行调配剥夺的。

【环路等待条件】:指在发生死锁时,必然存在一个线程——资源的环形链,即进程集合{T0,T1,T2,···,Tn}中的T0正在等待一个T1占用的资源;T1正在等待T2占用的资源,……,Tn正在等待已被T0占用的资源。

简单来说造成死锁的原因可以概括成三句话:

【1】当前线程拥有其他线程需要的资源

【2】当前线程等待其他线程已拥有的资源

【3】都不放弃自己拥有的资源

T1拥有R1,T2拥有R2。T1请求使用R2,T2请求使用R1,但是T1,T2 都不愿释放R1,R2,互相一直等待下去,造成死锁

    3. 如何避免死锁

死锁是我们非常不愿意看到的一种现象,我们要尽可能避免死锁的情况发生。通过设置某些限制条件,去破坏产生死锁的四个必要条件中的一个或者几个,来预防发生死锁。预防死锁是一种较易实现的方法。但是由于所施加的限制条件往往太严格,可能会导致系统资源利用率。

from threading import Lock, Thread

# 交易类
class Account:
  def __init__(self, _id, balance, lock):
    self.id = _id
    self.balance = balance
    self.lock = lock # 各自账户锁

  # 取钱
  def withdraw(self, amount):
    self.balance -= amount

  # 存钱
  def deposit(self, amount):
    self.balance += amount

  # 查看账户
  def get_balance(self):
    return self.balance

# 转账
def transfer(from_, to, amount):
  if from_.lock.acquire(): # 锁住自己的账户
    from_.withdraw(amount) # 自己账户减少
    if to.lock.acquire(): # 锁住对方账户
      to.deposit(amount) # 对方账户增加
      to.lock.release() # 解锁对方账户
    from_.lock.release() # 自己账户解锁
  print("转账完成")

Abby = Account("Abby", 5000, Lock())
Balen = Account("Balen", 3000, Lock())

t = Thread(target=transfer, args=(Abby, Balen, 1000))
t2 = Thread(target=transfer, args=(Balen, Abby, 500))
t.start()
t2.start()
t.join()
t2.join()

print("Abby:", Abby.get_balance())
print("Balen:", Balen.get_balance())

到此这篇关于浅谈Python线程的同步互斥与死锁的文章就介绍到这了,更多相关Python线程同步互斥与死锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python Threading 线程/互斥锁/死锁/GIL锁

    导入线程包 import threading 准备函数线程,传参数 t1 = threading.Thread(target=func,args=(args,)) 类继承线程,创建线程对象 class MyThread(threading.Thread) def run(self): pass if __name__ == "__main__": t = MyThread() t.start() 线程共享全面变量,但在共享全局变量时会出现数据错误问题 使用 threading 模块中的

  • Python多线程编程(五):死锁的形成

    前一篇文章Python:使用threading模块实现多线程编程四[使用Lock互斥锁]我们已经开始涉及到如何使用互斥锁来保护我们的公共资源了,现在考虑下面的情况– 如果有多个公共资源,在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,这会引起什么问题? 死锁概念 所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.

  • Python实现的多线程同步与互斥锁功能示例

    本文实例讲述了Python实现的多线程同步与互斥锁功能.分享给大家供大家参考,具体如下: #! /usr/bin/env python #coding=utf-8 import threading import time ''' #1.不加锁 num = 0 class MyThread(threading.Thread): def run(self): global num time.sleep(1) #一定要sleep!!! num = num + 1 msg = self.name + '

  • 举例讲解Python中的死锁、可重入锁和互斥锁

    一.死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况. 1.迭代死锁 该情况是一个线程"迭代"请求同一个资源,直接就会造成死锁: import threading import time class MyThread(threading.Thread): def run(self): global num time.sleep(1) if mutex.acquire(1): num = num+1 msg = se

  • python避免死锁方法实例分析

    本文实例讲述了python避免死锁方法.分享给大家供大家参考.具体分析如下: 当两个或者更多的线程在等待资源的时候就会产生死锁,两个线程相互等待. 在本文实例中 thread1 等待thread2释放block , thread2等待thtead1释放ablock,   避免死锁的原则: 1. 一定要以一个固定的顺序来取得锁,这个列子中,意味着首先要取得alock, 然后再去block 2. 一定要按照与取得锁相反的顺序释放锁,这里,应该先释放block,然后是alock import thre

  • 利用Python+Java调用Shell脚本时的死锁陷阱详解

    前言 最近有一项需求,要定时判断任务执行条件是否满足并触发 Spark 任务,平时编写 Spark 任务时都是封装为一个 Jar 包,然后采用 Shell 脚本形式传入所需参数执行,考虑到本次判断条件逻辑复杂,只用 Shell 脚本完成不利于开发测试,所以调研使用了 Python 和 Java 分别调用 Spark 脚本的方法. 使用版本为 Python 3.6.4 及 JDK 8 Python 主要使用 subprocess 库.Python 的 API 变动比较频繁,在 3.5 之后新增了

  • Python中死锁的形成示例及死锁情况的防止

    死锁示例 搞多线程的经常会遇到死锁的问题,学习操作系统的时候会讲到死锁相关的东西,我们用Python直观的演示一下. 死锁的一个原因是互斥锁.假设银行系统中,用户a试图转账100块给用户b,与此同时用户b试图转账200块给用户a,则可能产生死锁. 2个线程互相等待对方的锁,互相占用着资源不释放. #coding=utf-8 import time import threading class Account: def __init__(self, _id, balance, lock): sel

  • 浅谈Python线程的同步互斥与死锁

    线程间通信方法 1. 通信方法 线程间使用全局变量进行通信     2. 共享资源争夺 共享资源:多个进程或者线程都可以操作的资源称为共享资源.对共享资源的操作代码段称为临界区. 影响 : 对共享资源的无序操作可能会带来数据的混乱,或者操作错误.此时往往需要同步互斥机制协调操作顺序.     3. 同步互斥机制 同步 : 同步是一种协作关系,为完成操作,多进程或者线程间形成一种协调,按照必要的步骤有序执行操作.两个或两个以上的进程或线程在运行过程中协同步调,按预定的先后次序运行.比如 A 任务的

  • 浅谈python 线程池threadpool之实现

    首先介绍一下自己使用到的名词: 工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务: 任务(requests):即工作线程处理的任务,任务可能成千上万个,但是工作线程只有少数.任务通过          makeRequests来创建 任务队列(request_queue):存放任务的队列,使用了queue实现的.工作线程从任务队列中get任务进行处理: 任务处理函数(callable):工作线程get到任务后,通过调用任务的任务处理函数即(re

  • 浅谈python多线程和多线程变量共享问题介绍

    1.demo 第一个代码是多线程的简单使用,编写了线程如何执行函数和类. import threading import time class ClassName(threading.Thread): """创建类,通过多线程执行""" def run(self): for i in range(5): print(i) time.sleep(1) def sing(): for i in range(1,11): print("唱歌第

  • 浅谈Python协程

    协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈.因此: 协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置. 协程的好处: 无需线程上下文切换的开销 无需原子操作锁定及同步的开销 "原子操作(atomic o

  • 浅谈Python协程asyncio

    一.协程 官方描述; 协程是子例程的更一般形式. 子例程可以在某一点进入并在另一点退出. 协程则可以在许多不同的点上进入.退出和恢复. 它们可通过 async def 语句来实现. 参见 PEP 492. 协程不是计算机内部提供的,不像进程.线程,由电脑本身提供,它是由程序员人为创造的, 实现函数异步执行. 协程(Coroutine),也可以被称为微线程,是一种用户太内的上下文切换技术,其实就是通过一个线程实现代码块相互切换执行.看上去像子程序,但执行过程中,在子程序内部可中断,然后转而执行别的

  • 浅谈Java线程间通信之wait/notify

    Java中的wait/notify/notifyAll可用来实现线程间通信,是Object类的方法,这三个方法都是native方法,是平台相关的,常用来实现生产者/消费者模式.先来我们来看下相关定义: wait() :调用该方法的线程进入WATTING状态,只有等待另外线程的通知或中断才会返回,调用wait()方法后,会释放对象的锁. wait(long):超时等待最多long毫秒,如果没有通知就超时返回. notify() :通知一个在对象上等待的线程,使其从wait()方法返回,而返回的前提

  • 浅谈Python基础之I/O模型

    一.I/O模型 IO在计算机中指Input/Output,也就是输入和输出.由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘.网络等,就需要IO接口. 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别? 这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blockin

  • 浅谈Python中的全局锁(GIL)问题

    CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状态.比如复杂的加减乘除.计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数. 计算密集型任务由于主要消耗CPU资源,因

  • 浅谈Python中threading join和setDaemon用法及区别说明

    Python多线程编程时,经常会用到join()和setDaemon()方法,今天特地研究了一下两者的区别. 1.join ()方法:主线程A中,创建了子线程B,并且在主线程A中调用了B.join(),那么,主线程A会在调用的地方等待,直到子线程B完成操作后,才可以接着往下执行,那么在调用这个线程时可以使用被调用线程的join方法. 原型:join([timeout]) 里面的参数时可选的,代表线程运行的最大时间,即如果超过这个时间,不管这个此线程有没有执行完毕都会被回收,然后主线程或函数都会接

  • 浅谈python锁与死锁问题

    如果你学过操作系统,那么对于锁应该不陌生.锁的含义是线程锁,可以用来指定某一个逻辑或者是资源同一时刻只能有一个线程访问.这个很好理解,就好像是有一个房间被一把锁锁住了,只有拿到钥匙的人才能进入.每一个人从房间门口拿到钥匙进入房间,出房间的时候会把钥匙再放回到门口.这样下一个到门口的人就可以拿到钥匙了.这里的房间就是某一个资源或者是一段逻辑,而拿取钥匙的人其实指的是一个线程. 加锁的原因 我们明白了锁的原理,不禁有了一个问题,我们为什么需要锁呢,它在哪些场景当中会用到呢? 其实它的使用场景非常广,

随机推荐