Pytorch之保存读取模型实例

pytorch保存数据

pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件。

# 保存模型示例代码
print('===> Saving models...')
state = {
  'state': model.state_dict(),
  'epoch': epoch          # 将epoch一并保存
}
if not os.path.isdir('checkpoint'):
  os.mkdir('checkpoint')
torch.save(state, './checkpoint/autoencoder.t7')

保存用到torch.save函数,注意该函数第一个参数可以是单个值也可以是字典,字典可以存更多你要保存的参数(不仅仅是权重数据)。

pytorch读取数据

pytorch读取数据使用的方法和我们平时使用预训练参数所用的方法是一样的,都是使用load_state_dict这个函数。

下方的代码和上方的保存代码可以搭配使用。

print('===> Try resume from checkpoint')
if os.path.isdir('checkpoint'):
  try:
    checkpoint = torch.load('./checkpoint/autoencoder.t7')
    model.load_state_dict(checkpoint['state'])    # 从字典中依次读取
    start_epoch = checkpoint['epoch']
    print('===> Load last checkpoint data')
  except FileNotFoundError:
    print('Can\'t found autoencoder.t7')
else:
  start_epoch = 0
  print('===> Start from scratch')

以上是pytorch读取的方法汇总,但是要注意,在使用官方的预处理模型进行读取时,一般使用的格式是pth,使用官方的模型读取命令会检查你模型的格式是否正确,如果不是使用官方提供模型通过下面的函数强行读取模型(将其他模型例如caffe模型转过来的模型放到指定目录下)会发生错误。

def vgg19(pretrained=False, **kwargs):
  """VGG 19-layer model (configuration "E")

  Args:
    pretrained (bool): If True, returns a model pre-trained on ImageNet
  """
  model = VGG(make_layers(cfg['E']), **kwargs)
  if pretrained:
    model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
  return model

假如我们有从caffe模型转过来的pytorch模型([0-255,BGR]),我们可以使用:

model_dir = '自己的模型地址'
model = VGG()
model.load_state_dict(torch.load(model_dir + 'vgg_conv.pth'))

也就是pytorch的读取函数进行读取即可。

以上这篇Pytorch之保存读取模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch中获取模型input/output shape实例

    Pytorch官方目前无法像tensorflow, caffe那样直接给出shape信息,详见 https://github.com/pytorch/pytorch/pull/3043 以下代码算一种workaround.由于CNN, RNN等模块实现不一样,添加其他模块支持可能需要改代码. 例如RNN中bias是bool类型,其权重也不是存于weight属性中,不过我们只关注shape够用了. 该方法必须构造一个输入调用forward后(model(x)调用)才可获取shape #coding

  • pytorch 加载(.pth)格式的模型实例

    有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod

  • pytorch获取模型某一层参数名及参数值方式

    1.Motivation: I wanna modify the value of some param; I wanna check the value of some param. The needed function: 2.state_dict() #generator type model.modules()#generator type named_parameters()#OrderDict type from torch import nn import torch #creat

  • 基于pytorch的保存和加载模型参数的方法

    当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了. 保存和加载模型参数有两种方式: 方式一: torch.save(net.state_dict(),path): 功能:保存训练完的网络的各层参数(即weights和bias) 其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth) net2.load_state_dict(torch.loa

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • pytorch 求网络模型参数实例

    用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量.下面分别介绍来两种方法求模型参数 一 .求得每一层的模型参数,然后自然的可以计算出总的参数. 1.先初始化一个网络模型model 比如我这里是 model=cliqueNet(里面是些初始化的参数) 2.调用model的Parameters类获取参数列表 一个典型的操作就是将参数列表传入优化器里.如下 optimizer = optim.Adam(model.parameters(), lr=opt.lr) 言归正传,继续回到参

  • Pytorch之保存读取模型实例

    pytorch保存数据 pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式.而pth文件是python中存储文件的常用格式.而在keras中则是使用.h5文件. # 保存模型示例代码 print('===> Saving models...') state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存 } if not os.path.isdir('checkpoin

  • tensorflow如何继续训练之前保存的模型实例

    一:需重定义神经网络继续训练的方法 1.训练代码 import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b&qu

  • TensorFlow Saver:保存和读取模型参数.ckpt实例

    在使用TensorFlow的过程中,保存模型参数变量是很重要的一个环节,既可以保证训练过程信息不丢失,也可以帮助我们在需要快速恢复或使用一个模型的时候,利用之前保存好的参数之间导入,可以节省大量的训练时间.本文通过最简单的例程教大家如何保存和读取.ckpt文件. 一.保存到文件 首先是导入必要的东西: import tensorflow as tf import numpy as np 随便写几个变量: # Save to file # remember to define the same d

  • 对tensorflow 的模型保存和调用实例讲解

    我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了. 1.模型的保存 # 声明两个变量 v1 = tf.Variable(tf.random_normal([1, 2]), name="v1") v2 = tf.Variable(tf.random_normal([2, 3]), name="v2") init_op = tf.global_variables_initializer(

  • Pytorch通过保存为ONNX模型转TensorRT5的实现

    1 Pytorch以ONNX方式保存模型 def saveONNX(model, filepath): ''' 保存ONNX模型 :param model: 神经网络模型 :param filepath: 文件保存路径 ''' # 神经网络输入数据类型 dummy_input = torch.randn(self.config.BATCH_SIZE, 1, 28, 28, device='cuda') torch.onnx.export(model, dummy_input, filepath,

  • keras训练浅层卷积网络并保存和加载模型实例

    这里我们使用keras定义简单的神经网络全连接层训练MNIST数据集和cifar10数据集: keras_mnist.py from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from keras.models import Sequential

  • iOS 沙盒图片保存读取实例

    实例如下所示: //保存图片 -(void)saveImageDocuments:(UIImage *)image{ //拿到图片 UIImage *imagesave = image; NSString *path_sandox = NSHomeDirectory(); //设置一个图片的存储路径 NSString *imagePath = [path_sandox stringByAppendingString:@"/Documents/test.png"]; //把图片直接保存到

  • ajax实现上传图片保存到后台并读取的实例

    上传图片有两种方式: 1.fileReader  可以把图片解析成base64码的格式,简单粗暴 2.canvas  可以重新绘制一张图片,可以先把获取得到的图片的blob放进canvas里面,再生成宽高和透明度的图片,然后转成相应的类型传到后台,目前支持png和jpeg格式. 以上这篇ajax实现上传图片保存到后台并读取的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

随机推荐