基于Redis实现分布式锁的方法(lua脚本版)

1、前言

在Java中,我们通过锁来避免由于竞争而造成的数据不一致问题。通常我们使用synchronized 、Lock来实现。但是Java中的锁只能保证在同一个JVM进程内中可用,在跨JVM进程,例如分布式系统上则不可靠了。

2、分布式锁

分布式锁,是一种思想,它的实现方式有很多,如基于数据库实现、基于缓存(Redis等)实现、基于Zookeeper实现等等。为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件

  • 互斥性:在任意时刻,只有一个客户端能持有锁。
  • 不会发生死锁:即使客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。
  • 具有容错性:只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。
  • 解铃还须系铃人:加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。

3、基于Redis实现分布式锁

以下代码实现了基于redis中间件的分布式锁。加锁的过程中为了保障setnx(设置KEY)和expire(设置超时时间)尽可能在一个事务中,使用到了lua脚本的方式,将需要完成的指令一并提交到redis中;

3.1、RedisConfig.java

package com.demo.configuration;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

@Configuration
public class RedisConfig {

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(factory);
        // key采用String的序列化方式
        template.setKeySerializer(new StringRedisSerializer());
        // value序列化方式采用jackson
        template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
        template.afterPropertiesSet();
        return template;
    }

}

3.2、RedisLockController.java

package com.demo.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.scripting.support.ResourceScriptSource;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Arrays;

@RestController
@RequestMapping("/redis")
public class RedisLockController {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    @RequestMapping(value = "/lock/{key}/{uid}/{expire}")
    public Long lock(@PathVariable("key") String key, @PathVariable("uid") String uid, @PathVariable("expire") Integer expire) {
        Long result = null;
        try {
            //调用lua脚本并执行
            DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
            redisScript.setResultType(Long.class);//返回类型是Long
            //lua文件存放在resources目录下的redis文件夹内
            redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("redis/redis_lock.lua")));
            result = redisTemplate.execute(redisScript, Arrays.asList(key), uid, expire);
            System.out.println("lock==" + result);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    @RequestMapping(value = "/unlock/{key}/{uid}")
    public Long unlock(@PathVariable("key") String key, @PathVariable("uid") String uid) {
        Long result = null;
        try {
            //调用lua脚本并执行
            DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
            redisScript.setResultType(Long.class);//返回类型是Long
            //lua文件存放在resources目录下的redis文件夹内
            redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("redis/redis_unlock.lua")));
            result = redisTemplate.execute(redisScript, Arrays.asList(key), uid);
            System.out.println("unlock==" + result);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

}

3.3、redis_lock.lua

if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then
    return redis.call('expire',KEYS[1],ARGV[2])
else
    return 0
end

3.4、redis_unlock.lua

if redis.call("exists",KEYS[1]) == 0 then
    return 1
end

if redis.call('get',KEYS[1]) == ARGV[1] then
    return redis.call('del',KEYS[1])
else
    return 0
end

4、测试效果

key123为key,thread12345为value标识锁的主人,300为该锁的超时时间

加锁:锁主人为thread12345
http://127.0.0.1:8080/redis/lock/key123/thread12345/300

解锁:解锁人为thread123456
http://127.0.0.1:8080/redis/unlock/key123/thread123456

解锁:解锁人为thread12345
http://127.0.0.1:8080/redis/unlock/key123/thread12345

4.1、加锁,其他人解锁


thread12345加的锁,thread123456是解不了的,只有等thread12345自己解锁或者锁的超时时间过期

4.2、加锁,自己解锁


thread12345加的锁,thread12345自己随时可以解锁,也可以等锁的超时时间过期

5、总结

  • 使用Redis锁,会有业务未执行完,锁过期的问题,也就是锁不具有可重入性的特点。
  • 使用Redis锁,在尝试获取锁的时候,是非阻塞的,不满足在一定期限内不断尝试获取锁的场景。
  • 以上两点,都可以采用Redisson锁解决。

到此这篇关于基于Redis实现分布式锁的方法(lua脚本版)的文章就介绍到这了,更多相关Redis实现分布式锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • SpringBoot集成Redisson实现分布式锁的方法示例

    上篇 <SpringBoot 集成 redis 分布式锁优化>对死锁的问题进行了优化,今天介绍的是 redis 官方推荐使用的 Redisson ,Redisson 架设在 redis 基础上的 Java 驻内存数据网格(In-Memory Data Grid),基于NIO的 Netty 框架上,利用了 redis 键值数据库.功能非常强大,解决了很多分布式架构中的问题. Github的wiki地址: https://github.com/redisson/redisson/wiki 官方文档

  • Go语言中通过Lua脚本操作Redis的方法

    前言 为了在我的一个基本库中降低与Redis的通讯成本,我将一系列操作封装到LUA脚本中,借助Redis提供的EVAL命令来简化操作. EVAL能够提供的特性: 可以在LUA脚本中封装若干操作,如果有多条Redis指令,封装好之后只需向Redis一次性发送所有参数即可获得结果 Redis可以保证Lua脚本运行期间不会有其他命令插入执行,提供像数据库事务一样的原子性 Redis会根据脚本的SHA值缓存脚本,已经缓存过的脚本不需要再次传输Lua代码,减少了通信成本,此外在自己代码中改变Lua脚本,执

  • SpringBoot使用Redisson实现分布式锁(秒杀系统)

    前面讲完了Redis的分布式锁的实现,接下来讲Redisson的分布式锁的实现,一般提及到Redis的分布式锁我们更多的使用的是Redisson的分布式锁,Redis的官方也是建议我们这样去做的.Redisson点我可以直接跳转到Redisson的官方文档. 1.1.引入Maven依赖 <dependency> <groupId>org.redisson</groupId> <artifactId>redisson-spring-boot-starter&l

  • redis中如何使用lua脚本让你的灵活性提高5个逼格详解

    前言 在实际工作过程中,可以使用lua脚本来解决一些需要保证原子性的问题,而且lua脚本可以缓存在redis服务器上,势必会增加性能. 然而在redis的官网上洋洋洒洒的大概提供了200多个命令,貌似看起来很多,但是这些都是别人预先给你定义好的,但你却不能按照自己的意图进行定制, 所以是不是感觉自己还是有一种被束缚的感觉,有这个感觉就对了... 一:Lua脚本 说来也巧,redis的大老板给了你解决这种问题的方法,那就是Lua脚本,而且redis的最新版本也支持Lua Script debug,

  • Redis执行Lua脚本的好处与示例代码

    前言 Redis从2.6版本开始引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务端原子的执行多个Redis命令. 其中,使用EVAL命令可以直接对输入的脚本进行求值: redis>EVAL "return 'hello world'" 0 "hello world" 使用脚本的好处如下: 1.减少网络开销:本来5次网络请求的操作,可以用一个请求完成,原先5次请求的逻辑放在redis服务器上完成.使用脚本,减少

  • SpringBoot通过RedisTemplate执行Lua脚本的方法步骤

    lua 脚本 Redis 中使用 lua 脚本,我们需要注意的是,从 Redis 2.6.0后才支持 lua 脚本的执行. 使用 lua 脚本的好处: 原子操作:lua脚本是作为一个整体执行的,所以中间不会被其他命令插入. 减少网络开销:可以将多个请求通过脚本的形式一次发送,减少网络时延. 复用性:lua脚本可以常驻在redis内存中,所以在使用的时候,可以直接拿来复用,也减少了代码量. 1.RedisScript 首先你得引入spring-boot-starter-data-redis依赖,其

  • Java Redis分布式锁的正确实现方式详解

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介绍Redis分布式锁实现的博客,然而他们的实现却有着各种各样的问题,为了避免误人子弟,本篇博客将详细介绍如何正确地实现Redis分布式锁. 可靠性 首先,为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件: 互斥性.在任意时刻,只有一个客户端能持有锁. 不会发生死锁.即使有一个客户端在

  • Redis分布式锁的实现方式(redis面试题)

    什么是分布式锁? 要介绍分布式锁,首先要提到与分布式锁相对应的是线程锁.进程锁. 线程锁:主要用来给方法.代码块加锁.当某个方法或代码使用锁,在同一时刻仅有一个线程执行该方法或该代码段.线程锁只在同一JVM中有效果,因为线程锁的实现在根本上是依靠线程之间共享内存实现的,比如synchronized是共享对象头,显示锁Lock是共享某个变量(state). 进程锁:为了控制同一操作系统中多个进程访问某个共享资源,因为进程具有独立性,各个进程无法访问其他进程的资源,因此无法通过synchronize

  • 基于Redis实现分布式锁的方法(lua脚本版)

    1.前言 在Java中,我们通过锁来避免由于竞争而造成的数据不一致问题.通常我们使用synchronized .Lock来实现.但是Java中的锁只能保证在同一个JVM进程内中可用,在跨JVM进程,例如分布式系统上则不可靠了. 2.分布式锁 分布式锁,是一种思想,它的实现方式有很多,如基于数据库实现.基于缓存(Redis等)实现.基于Zookeeper实现等等.为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件 互斥性:在任意时刻,只有一个客户端能持有锁. 不会发生死锁:即使客户端

  • 基于redis实现分布式锁的原理与方法

    前言 系统的不断扩大,分布式锁是最基本的保障.与单机的多线程不一样的是,分布式跨多个机器.线程的共享变量无法跨机器. 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 今天我们介绍通过redis实现分布式锁.实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布

  • 详解Java如何实现基于Redis的分布式锁

    前言 单JVM内同步好办, 直接用JDK提供的锁就可以了,但是跨进程同步靠这个肯定是不可能的,这种情况下肯定要借助第三方,我这里实现用Redis,当然还有很多其他的实现方式.其实基于Redis实现的原理还算比较简单的,在看代码之前建议大家先去看看原理,看懂了之后看代码应该就容易理解了. 我这里不实现JDK的java.util.concurrent.locks.Lock接口,而是自定义一个,因为JDK的有个newCondition方法我这里暂时没实现.这个Lock提供了5个lock方法的变体,可以

  • Java基于redis实现分布式锁

    为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已

  • php基于redis的分布式锁实例详解

    在使用分布式锁进行互斥资源访问时候,我们很多方案是采用redis的实现. 固然,redis的单节点锁在极端情况也是有问题的,假设你的业务允许偶尔的失效,使用单节点的redis锁方案就足够了,简单而且效率高. redis锁失效的情况: 客户端1从master节点获取了锁 master宕机了,存储锁的key还没来得及同步到slave节点上 slave升级为master 客户端2从新的master上获取到同一个资源的锁 于是,客户端1和客户端2同事持有了同一个资源的锁,锁的安全性被打破. 如果我们不考

  • 详解基于redis实现分布式锁

    前言 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 原理剖析 上述三种分布式锁都是通过各自为依据对各个请求进行上锁,解锁从而控制放行还是拒绝.redis锁是基于其提供的setnx命令. setnx当且仅当key不存在.若给定key已经存在,则setnx不做任何动作.setnx是一个原子

  • 使用Redis实现分布式锁的方法

    目录 Redis 中的分布式锁如何使用 分布式锁的使用场景 使用 Redis 来实现分布式锁 使用 set key value px milliseconds nx 实现 SETNX+Lua 实现 使用 Redlock 实现分布式锁 锁的续租 看看 SETEX 的源码 为什么 Redis 可以用来做分布式锁 分布式锁如何选择 总结 参考 Redis 中的分布式锁如何使用 分布式锁的使用场景 为了保证我们线上服务的并发性和安全性,目前我们的服务一般抛弃了单体应用,采用的都是扩展性很强的分布式架构.

  • SpringBoot中使用redis做分布式锁的方法

    一.模拟问题 最近在公司遇到一个问题,挂号系统是做的集群,比如启动了两个相同的服务,病人挂号的时候可能会出现同号的情况,比如两个病人挂出来的号都是上午2号.这就出现了问题,由于是集群部署的,所以单纯在代码中的方法中加锁是不能解决这种情况的.下面我将模拟这种情况,用redis做分布式锁来解决这个问题. 1.新建挂号明细表 2.在idea上新建项目 下图是创建好的项目结构,上面那个parent项目是其他项目不用管它,和新建的没有关系 3.开始创建controller,service,dao(mapp

  • SpringBoot基于Redis的分布式锁实现过程记录

    目录 一.概述 二.环境搭建 三.模拟一个库存扣减的场景 四.总结 一.概述 什么是分布式锁 在单机环境中,一般在多并发多线程场景下,出现多个线程去抢占一个资源,这个时候会出现线程同步问题,造成执行的结果没有达到预期.我们会用线程间加锁的方式,比如synchronized,lock,volatile,以及JVM并发包中提供的其他工具类去处理此问题. 但是随着技术的发展,分布式系统的出现,各个应用服务都部署在不同节点,由各自的JVM去操控,资源已经不是在 线程 之间的共享,而是变成了 进程 之间的

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

随机推荐