python中opencv实现文字分割的实践

图片文字分割的时候,常用的方法有两种。一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像;还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像。

投影法

对文字图片作横向和纵向投影,即通过统计出每一行像素个数,和每一列像素个数,来分割文字。
分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的。

算法步骤:

  • 使用水平投影和垂直投影的方式进行图像分割,根据投影的区域大小尺寸分割每行和每块的区域,对原始图像进行二值化处理。
  • 投影之前进行图像灰度学调整做膨胀操作
  • 分别进行水平投影和垂直投影
  • 根据投影的长度和高度求取完整行和块信息

横板文字-小票文字分割

#小票水平分割
import cv2
import numpy as np

img = cv2.imread(r"C:\Users\An\Pictures\1.jpg")
cv2.imshow("Orig Image", img)
# 输出图像尺寸和通道信息
sp = img.shape
print("图像信息:", sp)
sz1 = sp[0]  # height(rows) of image
sz2 = sp[1]  # width(columns) of image
sz3 = sp[2]  # the pixels value is made up of three primary colors
print('width: %d \n height: %d \n number: %d' % (sz2, sz1, sz3))
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold_img = cv2.threshold(gray_img, 120, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("threshold_img", threshold_img)

# 水平投影分割图像
gray_value_x = []
for i in range(sz1):
    white_value = 0
    for j in range(sz2):
        if threshold_img[i, j] == 255:
            white_value += 1
    gray_value_x.append(white_value)
print("", gray_value_x)
# 创建图像显示水平投影分割图像结果
hori_projection_img = np.zeros((sp[0], sp[1], 1), np.uint8)
for i in range(sz1):
    for j in range(gray_value_x[i]):
        hori_projection_img[i, j] = 255
cv2.imshow("hori_projection_img", hori_projection_img)
text_rect = []
# 根据水平投影分割识别行
inline_x = 0
start_x = 0
text_rect_x = []
for i in range(len(gray_value_x)):
    if inline_x == 0 and gray_value_x[i] > 10:
        inline_x = 1
        start_x = i
    elif inline_x == 1 and gray_value_x[i] < 10 and (i - start_x) > 5:
        inline_x = 0
        if i - start_x > 10:
            rect = [start_x - 1, i + 1]
            text_rect_x.append(rect)
print("分行区域,每行数据起始位置Y:", text_rect_x)
# 每行数据分段
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 3))
dilate_img = cv2.dilate(threshold_img, kernel)
cv2.imshow("dilate_img", dilate_img)
for rect in text_rect_x:
    cropImg = dilate_img[rect[0]:rect[1],0:sp[1]]  # 裁剪图像y-start:y-end,x-start:x-end
    sp_y = cropImg.shape
    # 垂直投影分割图像
    gray_value_y = []
    for i in range(sp_y[1]):
        white_value = 0
        for j in range(sp_y[0]):
            if cropImg[j, i] == 255:
                white_value += 1
        gray_value_y.append(white_value)
    # 创建图像显示水平投影分割图像结果
    veri_projection_img = np.zeros((sp_y[0], sp_y[1], 1), np.uint8)
    for i in range(sp_y[1]):
        for j in range(gray_value_y[i]):
            veri_projection_img[j, i] = 255
    cv2.imshow("veri_projection_img", veri_projection_img)
    # 根据垂直投影分割识别行
    inline_y = 0
    start_y = 0
    text_rect_y = []
    for i in range(len(gray_value_y)):
        if inline_y == 0 and gray_value_y[i] > 2:
            inline_y = 1
            start_y = i
        elif inline_y == 1 and gray_value_y[i] < 2 and (i - start_y) > 5:
            inline_y = 0
            if i - start_y > 10:
                rect_y = [start_y - 1, i + 1]
                text_rect_y.append(rect_y)
                text_rect.append([rect[0], rect[1], start_y - 1, i + 1])
                cropImg_rect = threshold_img[rect[0]:rect[1], start_y - 1:i + 1]  # 裁剪图像
                cv2.imshow("cropImg_rect", cropImg_rect)
                # cv2.imwrite("C:/Users/ThinkPad/Desktop/cropImg_rect.jpg",cropImg_rect)
                # break
        # break
# 在原图上绘制截图矩形区域
print("截取矩形区域(y-start:y-end,x-start:x-end):", text_rect)
rectangle_img = cv2.rectangle(img, (text_rect[0][2], text_rect[0][0]), (text_rect[0][3], text_rect[0][1]),
                              (255, 0, 0), thickness=1)
for rect_roi in text_rect:
    rectangle_img = cv2.rectangle(img, (rect_roi[2], rect_roi[0]), (rect_roi[3], rect_roi[1]), (255, 0, 0), thickness=1)
cv2.imshow("Rectangle Image", rectangle_img)

key = cv2.waitKey(0)
if key == 27:
    print(key)
    cv2.destroyAllWindows()

小票图像二值化结果如下:

小票图像结果分割如下:

竖版-古文文字分割

对于古籍来说,古籍文字书写在习惯是从上到下的,所以说在扫描的时候应该扫描列投影,在扫描行投影。

1.原始图像进行二值化

使用水平投影和垂直投影的方式进行图像分割,根据投影的区域大小尺寸分割每行和每块的区域,对原始图像进行二值化处理。

原始图像:

二值化后的图像:

2.图像膨胀

投影之前进行图像灰度学调整做膨胀操作,选取适当的核,对图像进行膨胀处理。

3.垂直投影

定位该行文字区域:
数值不为0的区域就是文字存在的地方(即二值化后白色部分的区域),为0的区域就是每行之间相隔的距离。
1、如果前一个数为0,则记录第一个不为0的坐标。
2、如果前一个数不为0,则记录第一个为0的坐标。形象的说就是从出现第一个非空白列到出现第一个空白列这段区域就是文字存在的区域。
通过以上规则就可以找出每一列文字的起始点和终止点,从而确定每一列的位置信息。

垂直投影结果:

通过上面的垂直投影,根据其白色小山峰的起始位置就可以界定出每一列的起始位置,从而把每一列分割出来。

4.水平投影

根据投影的长度和高度求取完整行和块信息
通过水平投影可以获得每一个字符左右的起始位置,这样也就可以获得到每一个字符的具体坐标位置,即一个矩形框的位置。

import cv2
import numpy as np
import os

img = cv2.imread(r"C:\Users\An\Pictures\3.jpg")
save_path=r"E:\crop_img\result" #图像分解的每一步保存的地址
crop_path=r"E:\crop_img\img" #图像切割保存的地址
cv2.imshow("Orig Image", img)
# 输出图像尺寸和通道信息
sp = img.shape
print("图像信息:", sp)
sz1 = sp[0]  # height(rows) of image
sz2 = sp[1]  # width(columns) of image
sz3 = sp[2]  # the pixels value is made up of three primary colors
print('width: %d \n height: %d \n number: %d' % (sz2, sz1, sz3))
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold_img = cv2.threshold(gray_img, 120, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("threshold_img", threshold_img)
cv2.imwrite(os.path.join(save_path,"threshold_img.jpg"),threshold_img)

# 垂直投影分割图像
gray_value_y = []
for i in range(sz2):
    white_value = 0
    for j in range(sz1):
        if threshold_img[j, i] == 255:
            white_value += 1
    gray_value_y.append(white_value)
print("", gray_value_y)
#创建图像显示垂直投影分割图像结果
veri_projection_img = np.zeros((sp[0], sp[1], 1), np.uint8)
for i in range(sz2):
    for j in range(gray_value_y[i]):
        veri_projection_img[j, i] = 255
cv2.imshow("veri_projection_img", veri_projection_img)
cv2.imwrite(os.path.join(save_path,"veri_projection_img.jpg"),veri_projection_img)
text_rect = []

# 根据垂直投影分割识别列
inline_y = 0
start_y = 0
text_rect_y = []
for i in range(len(gray_value_y)):
    if inline_y == 0 and gray_value_y[i]> 30:
        inline_y = 1
        start_y = i
    elif inline_y == 1 and gray_value_y[i] < 30 and (i - start_y) > 5:
        inline_y = 0
        if i - start_y > 10:
            rect = [start_y - 1, i + 1]
            text_rect_y.append(rect)
print("分列区域,每列数据起始位置Y:", text_rect_y)
# 每列数据分段
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 3))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
dilate_img = cv2.dilate(threshold_img, kernel)
cv2.imshow("dilate_img", dilate_img)
cv2.imwrite(os.path.join(save_path,"dilate_img.jpg"),dilate_img)
for rect in text_rect_y:
    cropImg = dilate_img[0:sp[0],rect[0]:rect[1]]  # 裁剪图像y-start:y-end,x-start:x-end
    sp_x = cropImg.shape
    # 垂直投影分割图像
    gray_value_x = []
    for i in range(sp_x[0]):
        white_value = 0
        for j in range(sp_x[1]):
            if cropImg[i, j] == 255:
                white_value += 1
        gray_value_x.append(white_value)
    # 创建图像显示水平投影分割图像结果
    hori_projection_img = np.zeros((sp_x[0], sp_x[1], 1), np.uint8)
    for i in range(sp_x[0]):
        for j in range(gray_value_x[i]):
            veri_projection_img[i, j] = 255
    # cv2.imshow("hori_projection_img", hori_projection_img)
    # 根据水平投影分割识别行
    inline_x = 0
    start_x = 0
    text_rect_x = []
    ind=0
    for i in range(len(gray_value_x)):
        ind+=1
        if inline_x == 0 and gray_value_x[i] > 2:
            inline_x = 1
            start_x = i
        elif inline_x == 1 and gray_value_x[i] < 2 and (i - start_x) > 5:
            inline_x = 0
            if i - start_x > 10:
                rect_x = [start_x - 1, i + 1]
                text_rect_x.append(rect_x)
                text_rect.append([start_x - 1, i + 1,rect[0], rect[1]])
                cropImg_rect = threshold_img[start_x - 1:i + 1,rect[0]:rect[1]]  # 裁剪二值化图像
                crop_img=img[start_x - 1:i + 1,rect[0]:rect[1]] #裁剪原图像
                # cv2.imshow("cropImg_rect", cropImg_rect)
                # cv2.imwrite(os.path.join(crop_path,str(ind)+".jpg"),crop_img)
                # break
        # break
# 在原图上绘制截图矩形区域
print("截取矩形区域(y-start:y-end,x-start:x-end):", text_rect)
rectangle_img = cv2.rectangle(img, (text_rect[0][2], text_rect[0][0]), (text_rect[0][3], text_rect[0][1]),
                              (255, 0, 0), thickness=1)
for rect_roi in text_rect:
    rectangle_img = cv2.rectangle(img, (rect_roi[2], rect_roi[0]), (rect_roi[3], rect_roi[1]), (255, 0, 0), thickness=1)
cv2.imshow("Rectangle Image", rectangle_img)
cv2.imwrite(os.path.join(save_path,"rectangle_img.jpg"),rectangle_img)
key = cv2.waitKey(0)
if key == 27:
    print(key)
    cv2.destroyAllWindows()

分割结果如下:

从分割的结果上看,基本上实现了图片中文字的分割。但由于中文结构复杂性,对于一些文字的分割并不理想,字会出现过度分割、有粘连的两个字会出现分割不够的现象。可以从图像预处理(图像腐蚀膨胀),边界判断阈值的调整等方面进行优化。

到此这篇关于python中opencv实现文字分割的实践的文章就介绍到这了,更多相关opencv 文字分割内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

  • python中opencv实现文字分割的实践

    图片文字分割的时候,常用的方法有两种.一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像:还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像. 投影法 对文字图片作横向和纵向投影,即通过统计出每一行像素个数,和每一列像素个数,来分割文字. 分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 算法步骤: 使用水平投影和垂直投

  • Python中OpenCV实现简单车牌字符切割

    在Jupyter Notebook上使用Python+opencv实现如下简单车牌字符切割.关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总. 1.实现代码 import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image #读取原图片 image1=cv2.imread("123456.jpg") cv2.imshow("image1&

  • python中opencv支持向量机的实现

    目录 支持向量机 理论基础 SVM使用介绍 例子介绍 完整程序 支持向量机 支持向量机(Support Vector Machine, SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大). 当数据集较小时,使用支持向量机进行分类非常有效. 支持向量机是最好的现成分类器之一,“现成”是指分类器不加修改即可直接使用. 在对原始数据分类的过程中,可能无法使用线性方法实现分割.支持向量机在分类时,把无法线性分割的数据映射到高维空

  • python 使用opencv 把视频分割成图片示例

    我就废话不多说了,直接上代码吧! #--coding:utf-8-- import cv2 #图像路径名字错误不提示 im=cv2.imread("timg.jpg",cv2.IMREAD_GRAYSCALE) cv2.imwrite('res.jpg',im) ''' cap=cv2.VideoCapture("1EF5013E37956E7EF2D5F935B6107F34.mp4") while True: ret,im=cap.read() cv2.imsh

  • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    这篇博客将介绍如何使用OpenCV和深度学习应用全面嵌套的边缘检测.并将对图像和视频流应用全面嵌套边缘检测,然后将结果与OpenCV的标准Canny边缘检测器进行比较. 1. 效果图 愤怒的小鸟--原始图 VS Canny边缘检测图 VS HED边缘检测图 花朵--原始图 VS Canny边缘检测图 VS HED边缘检测图 视频效果图GIF 如下 2. 全面嵌套边缘检测与Canny边缘检测 2.1 Hed与Canny边缘检测对比 Holistically-Nested Edge Detectio

  • python中opencv实现图片文本倾斜校正

    本项目为python项目需要安装python及python的opencv模块:opencv_python-4.0.1-cp37-cp37m-win32.whl 和 python的矩阵运算模块:numpy. 1.第一步,安装python3.7,具体安装步骤略. 2.第二步,使用pip安装python的矩阵运算模块:numpy. python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

  • python中opencv图像叠加、图像融合、按位操作的具体实现

    目录 1图像叠加 2图像融合 3按位操作 1图像叠加 可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. NOTE: OpenCV添加是饱和操作,也就是有上限值,而Numpy添加是模运算. 添加两个图像时, OpenCV功能将提供更好的结果.所以总是更好地坚持OpenCV功能. 代码: import cv2 import numpy as np x = np.uint8

  • python简单实现图片文字分割

    本文实例为大家分享了python简单实现图片文字分割的具体代码,供大家参考,具体内容如下 原图: 图片预处理:图片二值化以及图片降噪处理. # 图片二值化 def binarization(img,threshold): #图片二值化操作 width,height=img.size im_new = img.copy() for i in range(width): for j in range(height): a = img.getpixel((i, j)) aa = 0.30 * a[0]

  • Python中OpenCV图像特征和harris角点检测

    目录 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 import cv2 import numpy as np img =cv2.imread('pie.png') print('img.shape',img.

  • python中opencv Canny边缘检测

    目录 Canny边缘检测 Canny边缘检测基础 高斯滤波去除图像噪声 计算梯度 非极大值抑制 应用双阈值确定边缘 Canny函数及使用 Canny边缘检测 Canny边缘检测是一种使用多级边缘检测算法检测边缘的方法. OpenCV提供了函数cv2.Canny()实现Canny边缘检测. Canny边缘检测基础 Canny边缘检测分为如下几个步骤: 去噪.噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉. 计算梯度的幅度与方向 非极大值抑制,即适当地让边缘“变瘦” 确定边缘.使用双阈值算法确定

随机推荐