opencv python Canny边缘提取实现过程解析
这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍
非最大信号抑制:
高低阈值连接:
example
import cv2 as cv import numpy as np # canny运算步骤:5步 # 1. 高斯模糊 - GaussianBlur # 2. 灰度转换 - cvtColor # 3. 计算梯度 - Sobel/Scharr # 4. 非极大值抑制 # 5. 高低阈值输出二值图像 # 非极大值抑制: # 算法使用一个3×3邻域作用在幅值阵列M[i,j]的所有点上; # 每一个点上,邻域的中心像素M[i,j]与沿着梯度线的两个元素进行比较, # 其中梯度线是由邻域的中心点处的扇区值ζ[i,j]给出。 # 如果在邻域中心点处的幅值M[i,j]不比梯度线方向上的两个相邻点幅值大,则M[i,j]赋值为零,否则维持原值; # 此过程可以把M[i,j]宽屋脊带细化成只有一个像素点宽,即保留屋脊的高度值。 # 高低阈值连接 # T1,T2为阈值,凡是高于T2的都保留,凡是低于T1的都丢弃 # 从高于T2的像素出发,凡是大于T1而且相互连接的都保留。最终得到一个输出二值图像 # 推荐高低阈值比值为T2:T1 = 3:1/2:1,其中T2高阈值,T1低阈值 def edge_demo(image): blurred = cv.GaussianBlur(image, (3, 3), 0) gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY) grad_x = cv.Sobel(gray, cv.CV_16SC1, 1, 0) grad_y = cv.Sobel(gray, cv.CV_16SC1, 0, 1) # edge_output = cv.Canny(grad_x, grad_y, 30, 150) edge_output = cv.Canny(gray, 50, 150) cv.imshow("gray", gray) cv.imshow("Canny demo", edge_output) def main(): src = cv.imread("../images/Crystal.jpg") cv.imshow("demo",src) edge_demo(src) cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口 cv.destroyAllWindows() # 关闭所有窗口 if __name__ == '__main__': main()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python-openCV读RGB通道图实例
我就废话不多说了,直接上代码吧! #coding=utf-8 '''openCV中最核心的的类是Mat,他是matrix的缩写代表矩阵,该类在头文件opencv2\core\core.hpp中,它含有很多基本矩阵运算,C++需引用 Python含有numpy,在Python中不需要使用Mat''' #openCV中图像存储方式为(h,w,channel),顺序为BGR import cv2 import sys if __name__=='__main__': if len(sys.argv)>
-
关于初始种子自动选取的区域生长实例(python+opencv)
算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域).灰度图直方图.初始种子图.区域生长结果图. 另外,不管时初始种子选择还是区域生长,阈值选择很重要. import cv2 import numpy as np import matplotlib.pyplot as plt #初始种子选择 def originalSeed(gray, th): ret, thresh = cv2.cv2.threshold(gr
-
Python-opencv 双线性插值实例
我就废话不多说了,直接上代码吧! #coding=utf-8 import cv2 import numpy as np '''双线性插值''' img = cv2.imread('timg.jpeg', cv2.CV_LOAD_IMAGE_GRAYSCALE) # load the gray image cv2.imwrite('img.jpg', img) h, w = img.shape[:2] # shrink to half of the original a1 = np.array(
-
python通过opencv实现图片裁剪原理解析
这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分
-
python opencv 实现对图像边缘扩充
原始图像 根据图像的边界的像素值,向外扩充图片,每个方向扩充50个像素. a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REPLICATE) 把靠近边界的50个像素翻折出去(轴对称): a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REFLECT) 常数填充: a = cv2.copyMakeBorder(img,50,50,50,50, cv2.BORDER_CONSTANT,value
-
python opencv如何实现图片绘制
这篇文章主要介绍了python opencv如何实现图片绘制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 点和圆 : circle(img,center,radius,color,thickness=None,lineType=None,shift=None).各参数意义及作用如下. img:待画圆所在的图像. center:待画圆的圆心坐标. radius:待画圆的半径. color:待画圆的边框颜色,颜色格式为bgr格式.就是通道值 th
-
python使用openCV遍历文件夹里所有视频文件并保存成图片
如果你在文件夹里有很多视频,并且文件夹里还有文件夹,文件夹里的文件夹也有视频,怎么能逐个读取并且保存..所以我写了个代码用了os,walk,这个可以遍历所有文件夹里的文件和文件夹 import os import cv2 cut_frame = 250 # 多少帧截一次,自己设置就行 save_path = "C:\文献与资料\手持红外\图片" for root, dirs, files in os.walk(r"C:\文献与资料\手持红外"): # 这里就填文件夹
-
python opencv根据颜色进行目标检测的方法示例
颜色目标检测就是根据物体的颜色快速进行目标定位.使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标. 建立项目colordetect.py,代码如下: #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 def colorDetect(): image = cv2.imread('./1.png') # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值 boundaries
-
opencv python Canny边缘提取实现过程解析
这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍 非最大信号抑制: 高低阈值连接: example import cv2 as cv import numpy as np # canny运算步骤:5步 # 1. 高斯模糊 - GaussianBlur # 2. 灰度转换 - cvtCol
-
python Opencv计算图像相似度过程解析
这篇文章主要介绍了python Opencv计算图像相似度过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品.
-
用python写测试数据文件过程解析
这篇文章主要介绍了用python写测试数据文件过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 f是指向文件的指针,r是转义字符,可以让字符串中的\保持不被转义.路径点属性查然后加上当前文件. 'w'表示只写,'r'表示只读. import random 导入random数 s = []开一个空列表 循环,2^20用2**20表示 append是apply to end 把字符串接到后面 s = ''.join(s)表示以''中的元素为间
-
Python hashlib模块加密过程解析
这篇文章主要介绍了Python hashlib模块加密过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 hashlib模块 用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 import hashlib m = hashlib.md5() m.update(b"Hello") m.update(b"It's me
-
使用python远程操作linux过程解析
这篇文章主要介绍了使用python远程操作linux过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在云服务测试中,往往需要我们进入云服务内容进行相关内容的测试.这测试可以使用平台自身的noVNC.外部辅助xshell等工具连接到云服务内部进行测试. 但是在如此反复的测试操作中,就需要用到自动化测试方法去解决这方面的需求. 在python中我们可以通过第三方库paramiko,对linux的云服务器进行操作. 如下命令先行安装 pip
-
python Jupyter运行时间实例过程解析
这篇文章主要介绍了python Jupyter运行时间实例过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.Python time time()方法 import time time_start=time.time() time_end=time.time() print('totally cost',time_end-time_start) import time print "time.time(): %f " % ti
-
Python实现word2Vec model过程解析
这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import gensim, logging, os logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) import nltk corpus = nltk.corpus.brown.sents()
-
基于python调用psutil模块过程解析
这篇文章主要介绍了基于python调用psutils模块过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 用Python来编写脚本简化日常的运维工作是Python的一个重要用途.在Linux下,有许多系统命令可以让我们时刻监控系统运行的状态,如ps,top,free等等.要获取这些系统信息,Python可以通过subprocess模块调用并获取结果.但这样做显得很麻烦,尤其是要写很多解析代码. 在Python中获取系统信息的另一个好办法是
-
python操作gitlab API过程解析
这篇文章主要介绍了python操作gitlab API过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 使用 python-gitlab 模块来调用gitlab的API来管理gitlab install pip install python-gitlab # 如果是安装到Python3使用可以使用如下命令 pip3 install python-gitlab 配置 为了保护API 用到的 private_token,一般会将其写到系统的配
-
python处理RSTP视频流过程解析
这篇文章主要介绍了python处理RSTP视频流过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python链接海康摄像头,并以弹出框的方式播放实时视频流, 这种方式是以弹出框的形式播放.本地测试可以,实际业务场景不建议使用.可以采用rtsp转rtmp的方式 @shared_task def parse_video(rtsp_address=None): winname = 'Video' if not rtsp_address: ra
随机推荐
- Crontab+Shell做Nginx日志切割脚本实例代码
- IOS开发之tableView点击行跳转并带有“显示”更多功能
- destoon调用企业会员公司形象图片的实现方法
- android 加载本地联系人实现方法
- 一步步教你写Slack的Loading动画
- Android设置闹钟相对完善的解决方案
- 识别率很高的java文字识别技术
- 探索PowerShell(十五) 引号与转义字符
- Java面试题目集锦
- javascript 也来玩玩图片预加载
- jQuery中next()方法用法实例
- WordPress JQuery处理沙发头像
- node操作mysql数据库实例详解
- 详解在使用CDN加速时Nginx获取用户IP的配置方法
- C++ 将文件数据一次性加载进内存实例代码
- C语言/C++如何生成随机数
- LAMP环境使用Composer安装Laravel的方法
- 115网络U盘免费5g/支持各种文件类型/单个文件最大400m/不支持外链网络硬盘
- Odoo中如何生成唯一不重复的序列号详解
- Node.js文件编码格式的转换的方法