python同义词替换的实现(jieba分词)

TihuanWords.txt文档格式

注意:同一行的词用单个空格隔开,每行第一个词为同行词的替换词。

年休假 年假 年休
究竟 到底
回家场景 我回来了

代码

import jieba

def replaceSynonymWords(string1):
 # 1读取同义词表,并生成一个字典。
 combine_dict = {}
 # synonymWords.txt是同义词表,每行是一系列同义词,用空格分割
 for line in open("TihuanWords.txt", "r", encoding='utf-8'):
   seperate_word = line.strip().split(" ")
   num = len(seperate_word)
   for i in range(1, num):
     combine_dict[seperate_word[i]] = seperate_word[0]
   print(seperate_word)
 print(combine_dict)

 # 2提升某些词的词频,使其能够被jieba识别出来
 jieba.suggest_freq("年休假", tune=True)

 # 3将语句切分成单词
 seg_list = jieba.cut(string1, cut_all=False)

 f = "/".join(seg_list).encode("utf-8")
 f = f.decode("utf-8")
 print(f)
 # 4返回同义词替换后的句子
 final_sentence = " "
 for word in f.split('/'):
   if word in combine_dict:
     word = combine_dict[word]
     final_sentence += word
   else:
     final_sentence += word
 # print final_sentence
 return final_sentence

string1 = '年休到底放几天?'
print(replaceSynonymWords(string1))

结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python基于jieba库进行简单分词及词云功能实现方法

    本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

  • 用python结合jieba和wordcloud实现词云效果

    0x00 前言 突然想做一个漏洞词云,看看哪些漏洞比较高频,如果某些厂商有漏洞公开(比如ly),也好针对性挖掘.就选x云吧(镜像站 http://wy.hxsec.com/bugs.php ).用jieba和wordcloud两个强大的第三方库,就可以轻松打造出x云漏洞词云. github地址: https://github.com/theLSA/wooyun_wordcloud 本站下载地址:wooyun_wordcloud 0x01 爬取标题 直接上代码: #coding:utf-8 #Au

  • 浅谈python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 MIT 授权协议 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和搜索引擎

  • python使用jieba实现中文分词去停用词方法示例

    前言 jieba 基于Python的中文分词工具,安装使用非常方便,直接pip即可,2/3都可以,功能强悍,十分推荐. 中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词. 分词模块jieba,它是python比较好用的分词模块.待分词的字符串可以是 unicode 或 UTF-8 字符串.GBK 字符串.注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 支持三种分词模式 1 精确模式,试图将句子最精确地切开,适合

  • python jieba分词并统计词频后输出结果到Excel和txt文档方法

    前两天,班上同学写论文,需要将很多篇论文题目按照中文的习惯分词并统计每个词出现的频率. 让我帮她实现这个功能,我在网上查了之后发现jieba这个库还挺不错的. 运行环境: 安装python2.7.13:https://www.python.org/downloads/release/python-2713/ 安装jieba:pip install jieba 安装xlwt:pip install xlwt 具体代码如下: #!/usr/bin/python # -*- coding:utf-8

  • Python jieba库用法及实例解析

    1.jieba库基本介绍 (1).jieba库概述 jieba是优秀的中文分词第三方库 - 中文文本需要通过分词获得单个的词语 - jieba是优秀的中文分词第三方库,需要额外安装 - jieba库提供三种分词模式,最简单只需掌握一个函数 (2).jieba分词的原理 Jieba分词依靠中文词库 - 利用一个中文词库,确定汉字之间的关联概率 - 汉字间概率大的组成词组,形成分词结果 - 除了分词,用户还可以添加自定义的词组 jieba库使用说明 (1).jieba分词的三种模式 精确模式.全模式

  • 详解Python数据可视化编程 - 词云生成并保存(jieba+WordCloud)

    思维导图: 效果(语句版): 源码: # -*- coding: utf-8 -*- """ Created on Tue Mar 5 17:59:29 2019 @author: dell """ # ============================================================================= # 步骤: # 分割aaa = jieba.cut(str,cut_all=True/Fa

  • Python人工智能之路 jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实

  • python同义词替换的实现(jieba分词)

    TihuanWords.txt文档格式 注意:同一行的词用单个空格隔开,每行第一个词为同行词的替换词. 年休假 年假 年休 究竟 到底 回家场景 我回来了 代码 import jieba def replaceSynonymWords(string1): # 1读取同义词表,并生成一个字典. combine_dict = {} # synonymWords.txt是同义词表,每行是一系列同义词,用空格分割 for line in open("TihuanWords.txt", &quo

  • 基于python + django + whoosh + jieba 分词器实现站内检索功能

    基于 python django 源码 前期准备 安装库: pip install django-haystack pip install whoosh pip install jieba 如果pip 安装超时,可配置pip国内源下载,如下: pip install -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com <安装的库> pip install -i http://mirrors.al

  • Python基于jieba分词实现snownlp情感分析

    情感分析(sentiment analysis)是2018年公布的计算机科学技术名词. 它可以根据文本内容判断出所代表的含义是积极的还是负面的,也可以用来分析文本中的意思是褒义还是贬义. 一般应用场景就是能用来做电商的大量评论数据的分析,比如好评率或者差评率的统计等等. 我们这里使用到的情感分析的模块是snownlp,为了提高情感分析的准确度选择加入了jieba模块的分词处理. 由于以上的两个python模块都是非标准库,因此我们可以使用pip的方式进行安装. pip install jieba

  • Django实现whoosh搜索引擎使用jieba分词

    本文介绍了Django实现whoosh搜索引擎使用jieba分词,分享给大家,具体如下: Django版本:3.0.4 python包准备: pip install django-haystack pip install jieba 使用jieba分词 1.cd到site-packages内的haystack包,创建并编辑ChineseAnalyzer.py文件 # (注意:pip安装的是django-haystack,但是实际包的文件夹名字为haystack) cd /usr/local/li

  • python实现的读取网页并分词功能示例

    本文实例讲述了python实现的读取网页并分词功能.分享给大家供大家参考,具体如下: 这里使用分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/jieba 或点击此处本站下载jieba库. 代码: import requests from bs4 import BeautifulSoup import jieba # 获取html url = "http://finance.ifeng.com/a/20180328/16049779_0.shtml&quo

  • Python利用re模块实现简易分词(tokenization)

    目录 一个简单的tokenizer 过滤tokens流 注意子串匹配陷阱 一个简单的tokenizer 分词(tokenization)任务是Python字符串处理中最为常见任务了.我们这里讲解用正则表达式构建简单的表达式分词器(tokenizer),它能够将表达式字符串从左到右解析为标记(tokens)流. 给定如下的表达式字符串: text = 'foo = 12 + 5 * 6' 我们想要将其转换为下列以序列对呈现的分词结果: tokens = [('NAME', 'foo'), ('EQ

  • python字符串替换的2种方法

    python 字符串替换 是python 操作字符串的时候经常会碰到的问题,这里简单介绍下字符串替换方法. python 字符串替换可以用2种方法实现: 1是用字符串本身的方法. 2用正则来替换字符串 下面用个例子来实验下: a = 'hello word' 把a字符串里的word替换为python 1.用字符串本身的replace方法 复制代码 代码如下: a.replace('word','python') 输出的结果是hello python 2.用正则表达式来完成替换: 复制代码 代码如

  • Python正则替换字符串函数re.sub用法示例

    本文实例讲述了Python正则替换字符串函数re.sub用法.分享给大家供大家参考,具体如下: python re.sub属于python正则的标准库,主要是的功能是用正则匹配要替换的字符串 然后把它替换成自己想要的字符串的方法 re.sub 函数进行以正则表达式为基础的替换工作 下面是一段示例源码 #!/usr/bin/env python #encoding: utf-8 import re url = 'https://113.215.20.136:9011/113.215.6.77/c3

随机推荐