MySQL 千万级数据量如何快速分页

前言

后端开发中为了防止一次性加载太多数据导致内存、磁盘IO都开销过大,经常需要分页展示,这个时候就需要用到MySQL的LIMIT关键字。但你以为LIMIT分页就万事大吉了么,Too young,too simple啊,LIMIT在数据量大的时候极可能造成的一个问题就是深度分页。

案例

这里我以显示电商订单详情为背景举个例子,新建表如下:

CREATE TABLE `cps_user_order_detail` (
 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
 `user_id` varchar(32) NOT NULL DEFAULT '' COMMENT '用户ID',
 `order_id` bigint(20) DEFAULT NULL COMMENT '订单id',
 `sku_id` bigint(20) unsigned NOT NULL COMMENT '商品ID',
 `order_time` datetime DEFAULT NULL COMMENT '下单时间,格式yyyy-MM-dd HH:mm:ss',
 PRIMARY KEY (`id`),
 KEY `idx_time_user` (`order_time`,`user_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='用户订单详情';

然后手动向表里插入120W条数据。

现在有个需求:分页展示用户的订单详情,按照下单时间倒序。

表结构精简了,需求也简单。于是哗哗哗的写完代码,提测上线了。早期运行一切正常,可随着订单量的不断增大,发现系统越发的缓慢,还时不时报出几个 慢查询 。

这个时候你就该想到是LIMIT偏移的问题了,没错,不是你的SQL不够优美,就是MySQL自身的机制。

这里我就简单以两条SQL为例,如下图,分别是从100和100W的位置偏移分页,可以看到时间相差很大。这还不算其它数据运算和处理的时间,单一条SQL的查询就耗时一秒以上,在对用户提供的功能里这是不能容忍的(电商里经常要求一个接口的RT不超过200ms)。

这里我们再看下执行计划,如下图所示:

在此先介绍一下执行计划Extra列可能出现的值及含义:

  1. Using where:表示优化器需要通过索引回表查询数据。
  2. Using index:即覆盖索引,表示直接访问索引就足够获取到所需要的数据,不需要通过索引回表,通常是通过将待查询字段建立联合索引实现。
  3. Using index condition:在5.6版本后加入的新特性,即大名鼎鼎的索引下推,是MySQL关于减少回表次数的重大优化。
  4. Using filesort:文件排序,这个一般在ORDER BY时候,数据量过大,MySQL会将所有数据召回内存中排序,比较消耗资源。

再看看上图,同样的语句,只以为偏移量不同,就造成了执行计划的千差万别(且容我小小的夸张一下)。第一条语句LIMIT 100,6type列的值是range,表示范围扫描,性能比ref差一个级别,但是也算走了索引,并且还应用了索引下推:就是说在WHERE之后的下单时间删选走了索引,并且之后的ORDER BY也是根据索引下推优化,在执行WHERE条件筛选时同步进行的(没有回表)。
而第二条语句LIMIT 1000000,6压根就没走索引,type列的值是ALL,显然是全表扫描。并且Extra列字段里的Using where表示发生了回表,Using filesort表示ORDER BY时发生了文件排序。所以这里慢在了两点:一是文件排序耗时过大,二是根据条件筛选了相关的数据之后,需要根据偏移量回表获取全部值。无论是上面的哪一点,都是LIMIT偏移量过大导致的,所以实际开发环境经常遇到非统计表量级不得超过一百万的要求。

优化

原因分析完了,那么LIMIT深度分页在实际开发中怎么优化呢?这里少侠给两点方案。
一是通过主键索引优化。什么意思呢?就是把上面的语句修改成:

SELECT * FROM cps_user_order_detail d WHERE d.id > #{maxId} AND d.order_time>'2020-8-5 00:00:00' ORDER BY d.order_time LIMIT 6;

如上代码所示,同样也是分页,但是有个maxId的限制条件,这个是什么意思呢,maxId就是上一页中的最大主键Id。所以采用此方式的前提:1)主键必须自增不能是UUID并且前端除了传基本分页参数pageNo,pageSize外,还必须把每次上一页的最大Id带过来,2)该方式不支持随机跳页,也就是说只能上下翻页。如下图所示是某知名电商中的实际页面。

二是通过Elastic Search搜索引擎(基于倒排索引),实际上类似于淘宝这样的电商基本上都是把所有商品放进ES搜索引擎里的(那么海量的数据,放进MySQL是不可能的,放进Redis也不现实)。但即使用了ES搜索引擎,也还是有可能发生深度分页的问题的,这时怎么办呢?答案是通过游标scroll。关于此点这里不做深入,感兴趣的可以做研究。

小结

写这篇博客是因为前段时间在开发中真实经历到了,并且之前在字节面试中确实也和面试官探讨了一番。知道LIMIT的限制以及优化,在面试中能提到是加分项,不能说到MySQL优化就是建索引,调整SQL(实际上在真实开发中这两种优化方案的成效微乎其微)。毕竟MySQL优化那么牛X的话,就不会有那么多中间件产生了。
我是少侠露飞,爱技术,爱分享。

以上就是MySQL 千万级数据量如何快速分页的详细内容,更多关于MySQL快速分页的资料请关注我们其它相关文章!

(0)

相关推荐

  • MySQL 百万级分页优化(Mysql千万级快速分页)

    以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000000, 10; 也许耗费几十秒 网上很多优化的方法是这样的 复制代码 代码如下: SELECT * FROM table WHERE id >= (SELECT id FROM

  • MySQL limit使用方法以及超大分页问题解决

    前言 日常开发中,我们使用mysql来实现分页功能的时候,总是会用到mysql的limit语法.而怎么使用却很有讲究的,今天来总结一下. limit语法 limit语法支持两个参数,offset和limit,前者表示偏移量,后者表示取前limit条数据. 例如: ## 返回符合条件的前10条语句 select * from user limit 10 ## 返回符合条件的第11-20条数据 select * from user limit 10,20 从上面也可以看出来,limit n 等价于l

  • MySQL用limit方式实现分页的实例方法

    一.limit 基本实现方式 一般情况下,客户端通过传递 pageNo(页码).pageSize(每页条数)两个参数去分页查询数据库中的数据,在数据量较小(元组百/千级)时使用 MySQL自带的 limit 来解决这个问题: 收到客户端{pageNo:1,pagesize:10} select * from table limit (pageNo-1) * pageSize, pageSize; 收到客户端{pageNo:5,pageSize:30} select * from table li

  • 如何优化Mysql千万级快速分页

    看例子: 数 据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引.这是一个基本的新闻系统的简单模型.现在往里面填充数据,填充10万篇新闻. 最后collect 为 10万条记录,数据库表占用硬盘1.6G. OK ,看下面这条sql语句: select id,title from collect limit 1000,10; 很快:基本上0.01秒就OK

  • MySQL百万级数据分页查询优化方案

    当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询.对于数据库分页查询,也有很多种方法和优化的点.下面简单说一下我知道的一些方法. 准备工作 为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明. 表名:order_history 描述:某个业务的订单历史表 主要字段:unsigned int id,tinyint(4) int type 字段情况:该表一共37个字段,不包含text等大型数组,最大为varcha

  • mysql千万级数据分页查询性能优化

    mysql数据量大时使用limit分页,随着页码的增大,查询效率越低下. 实验 1.直接使用用limit start, count分页语句: select * from order limit start, count 当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下: select * from order limit 10, 20 0.016秒 select * from order limit 100, 20

  • Mysql limit 优化,百万至千万级快速分页 复合索引的引用并应用于轻量级框架

    MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发.可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了.用事实说话,看例子: 数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引.这是一个

  • MySQL 千万级数据量如何快速分页

    前言 后端开发中为了防止一次性加载太多数据导致内存.磁盘IO都开销过大,经常需要分页展示,这个时候就需要用到MySQL的LIMIT关键字.但你以为LIMIT分页就万事大吉了么,Too young,too simple啊,LIMIT在数据量大的时候极可能造成的一个问题就是深度分页. 案例 这里我以显示电商订单详情为背景举个例子,新建表如下: CREATE TABLE `cps_user_order_detail` ( `id` bigint(20) unsigned NOT NULL AUTO_I

  • MySQL深度分页(千万级数据量如何快速分页)

    目录 前言 案例 优化 小结 前言 后端开发中为了防止一次性加载太多数据导致内存.磁盘IO都开销过大,经常需要分页展示,这个时候就需要用到MySQL的LIMIT关键字.但你以为LIMIT分页就万事大吉了么,Too young,too simple啊,LIMIT在数据量大的时候极可能造成的一个问题就是深度分页. 案例 这里我以显示电商订单详情为背景举个例子,新建表如下: CREATE TABLE `cps_user_order_detail` ( `id` bigint(20) unsigned

  • mysql千万级数据量根据索引优化查询速度的实现

    (一)索引的作用 索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让人难以忍受了. 能在软件上解决的,就不在硬件上解决,毕竟硬件提升代码昂贵,性价比太低.代价小且行之有效的解决方法就是合理的加索引.索引使用得当,能使查询速度提升上千倍,效果惊人. (二)mysql的索引类型: mysql的索引有5种:主键索引.普通索引.唯一索引.全文索引.聚合索引(多列索引).

  • MySQL百万级数据量分页查询方法及其优化建议

    数据库SQL优化是老生常谈的问题,在面对百万级数据量的分页查询,又有什么好的优化建议呢?下面将列举了一些常用的方法,供大家参考学习! 方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余

  • MySQL千万级数据表的优化实战记录

    前言 这里先说明一下,网上很多人说阿里规定500w数据就要分库分表.实际上,这个500w并不是定义死的,而是与MySQL的配置以及机器的硬件有关.MySQL为了提升性能,会将表的索引装载到内存中.但是当表的数据到达一定的量的时候,会导致内存无法存储这些索引,无法存储索引,就只能进行磁盘IO,从而导致性能下降. 实战调优 我这里有张表,数据有1000w,目前只有一个主键索引 CREATE TABLE `user` ( `id` int(10) NOT NULL AUTO_INCREMENT, `u

  • MySQL千万级数据的大表优化解决方案

    目录 1.数据库设计和表创建时就要考虑性能 设计表时要注意: 索引 简言之就是使用合适的数据类型,选择合适的索引 引擎 2.sql的编写需要注意优化 3.分区 分区的好处是: 分区的限制和缺点: 分区的类型: 4.分表 5.分库 mysql数据库中的表数据量几千万后,查询速度会很慢,日常各种卡慢,严重影响使用体验.在考虑升级数据库或者换用大数据解决方案前,必须优化现有mysql数据库表设计和sql语句. 1.数据库设计和表创建时就要考虑性能 mysql数据库本身高度灵活,造成性能不足,严重依赖开

  • mysql千万级数据大表该如何优化?

    1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节: 2.数据项:是否有大字段,那些字段的值是否经常被更新: 3.数据查询SQL条件:哪些数据项的列名称经常出现在WHERE.GROUP BY.ORDER BY子句中等: 4.数据更新类SQL条件:有多少列经常出现UPDATE或DELETE 的WHERE子句中: 5.SQL量的统计比,如:SELECT:UPDATE+DELETE:INSERT=多少? 6.预计大表及相关联的SQL,每天总的执行量在何数量级? 7.表中的数据:更新为主的

  • 详解MySQL数据库千万级数据查询和存储

    百万级数据处理方案 数据存储结构设计 表字段设计 表字段 not null,因为 null 值很难查询优化且占用额外的索引空间,推荐默认数字 0. 数据状态类型的字段,比如 status, type 等等,尽量不要定义负数,如 -1.因为这样可以加上 UNSIGNED,数值容量就会扩大一倍. 可以的话用 TINYINT.SMALLINT 等代替 INT,尽量不使用 BIGINT,因为占的空间更小. 字符串类型的字段会比数字类型占的空间更大,所以尽量用整型代替字符串,很多场景是可以通过编码逻辑来实

随机推荐