使用sklearn对多分类的每个类别进行指标评价操作

今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score)。

对于这个需求,我们可以用sklearn来解决,方法并没有难,笔者在此仅做记录,供自己以后以及读者参考。

我们模拟的数据如下:

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

其中y_true为真实数据,y_pred为多分类后的模拟数据。使用sklearn.metrics中的classification_report即可实现对多分类的每个类别进行指标评价。

示例的Python代码如下:

# -*- coding: utf-8 -*-
from sklearn.metrics import classification_report

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

t = classification_report(y_true, y_pred, target_names=['北京', '上海', '成都'])

print(t)

输出结果如下:

       precision  recall f1-score  support

     北京    0.75   0.75   0.75     4
     上海    1.00   0.67   0.80     3
     成都    0.50   0.67   0.57     3

  accuracy              0.70    10
  macro avg    0.75   0.69   0.71    10
weighted avg    0.75   0.70   0.71    10

需要注意的是,输出的结果数据类型为str,如果需要使用该输出结果,则可将该方法中的output_dict参数设置为True,此时输出的结果如下:

{‘北京': {‘precision': 0.75, ‘recall': 0.75, ‘f1-score': 0.75, ‘support': 4},
‘上海': {‘precision': 1.0, ‘recall': 0.6666666666666666, ‘f1-score': 0.8, ‘support': 3},
‘成都': {‘precision': 0.5, ‘recall': 0.6666666666666666, ‘f1-score': 0.5714285714285715, ‘support': 3},
‘accuracy': 0.7,
‘macro avg': {‘precision': 0.75, ‘recall': 0.6944444444444443, ‘f1-score': 0.7071428571428572, ‘support': 10},
‘weighted avg': {‘precision': 0.75, ‘recall': 0.7, ‘f1-score': 0.7114285714285715, ‘support': 10}}

使用confusion_matrix方法可以输出该多分类问题的混淆矩阵,代码如下:

from sklearn.metrics import confusion_matrix
y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']
print(confusion_matrix(y_true, y_pred, labels = ['北京', '上海', '成都']))

输出结果如下:

[[2 0 1]
 [0 3 1]
 [0 1 2]]

为了将该混淆矩阵绘制成图片,可使用如下的Python代码:

# -*- coding: utf-8 -*-
# author: Jclian91
# place: Daxing Beijing
# time: 2019-11-14 21:52

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import matplotlib as mpl

# 支持中文字体显示, 使用于Mac系统
zhfont=mpl.font_manager.FontProperties(fname="/Library/Fonts/Songti.ttc")

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

classes = ['北京', '上海', '成都']
confusion = confusion_matrix(y_true, y_pred)

# 绘制热度图
plt.imshow(confusion, cmap=plt.cm.Greens)
indices = range(len(confusion))
plt.xticks(indices, classes, fontproperties=zhfont)
plt.yticks(indices, classes, fontproperties=zhfont)
plt.colorbar()
plt.xlabel('y_pred')
plt.ylabel('y_true')

# 显示数据
for first_index in range(len(confusion)):
  for second_index in range(len(confusion[first_index])):
    plt.text(first_index, second_index, confusion[first_index][second_index])

# 显示图片
plt.show()

生成的混淆矩阵图片如下:

补充知识:python Sklearn实现xgboost的二分类和多分类

二分类:

train2.txt的格式如下:

import numpy as np
import pandas as pd
import sklearn
from sklearn.cross_validation import train_test_split,cross_val_score
from xgboost.sklearn import XGBClassifier
from sklearn.metrics import precision_score,roc_auc_score

min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))
resultX = []
resultY = []
with open("./train_data/train2.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp)
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)
X = min_max_scaler.fit_transform(X)
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3)

xgbc = XGBClassifier()
xgbc.fit(X_train,Y_train)
pre_test = xgbc.predict(X_test)

auc_score = roc_auc_score(Y_test,pre_test)
pre_score = precision_score(Y_test,pre_test)

print("xgb_auc_score:",auc_score)
print("xgb_pre_score:",pre_score)

多分类:有19种分类其中正常0,异常1~18种。数据格式如下:

# -*- coding:utf-8 -*-
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.cross_validation import train_test_split,cross_val_score
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from xgboost.sklearn import XGBClassifier
import sklearn
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import precision_score,roc_auc_score
min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))

resultX = []
resultY = []
with open("../train_data/train_multi_class.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp) # 转化为浮点数
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)

#fit_transform(partData)对部分数据先拟合fit,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),然后对该partData进行转换transform,从而实现数据的标准化、归一化等等。。
X = min_max_scaler.fit_transform(X)
#通过OneHotEncoder函数将Y值离散化成19维,例如3离散成000000···100

Y = OneHotEncoder(sparse = False).fit_transform(Y.reshape(-1,1))
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)

model = OneVsRestClassifier(XGBClassifier(),n_jobs=2)
clf = model.fit(X_train, Y_train)

pre_Y = clf.predict(X_test)
test_auc2 = roc_auc_score(Y_test,pre_Y)#验证集上的auc值
print ("xgb_muliclass_auc:",test_auc2)

以上这篇使用sklearn对多分类的每个类别进行指标评价操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python sklearn库实现PCA教程(以鸢尾花分类为例)

    PCA简介 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等.矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推. 基本步骤: 具体实现 我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布.样本数据结构如下图: 其中样本总数为150

  • python sklearn包——混淆矩阵、分类报告等自动生成方式

    preface:做着最近的任务,对数据处理,做些简单的提特征,用机器学习算法跑下程序得出结果,看看哪些特征的组合较好,这一系列流程必然要用到很多函数,故将自己常用函数记录上.应该说这些函数基本上都会用到,像是数据预处理,处理完了后特征提取.降维.训练预测.通过混淆矩阵看分类效果,得出报告. 1.输入 从数据集开始,提取特征转化为有标签的数据集,转为向量.拆分成训练集和测试集,这里不多讲,在上一篇博客中谈到用StratifiedKFold()函数即可.在训练集中有data和target开始. 2.

  • python运用sklearn实现KNN分类算法

    KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下 最简单的分类算法,易于理解和实现 实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类. 注意 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类 k需要进行自定义,一般选取k<30 距离一般用欧氏距离,即​  通过sklearn对数据使用KNN算法进行分类 代码如下: ## 导入鸢尾花数据集 iris = datasets.lo

  • sklearn-SVC实现与类参数详解

    sklearn-SVC实现与类参数 对应的API:http://scikit-learn.sourceforge.net/stable/modules/generated/sklearn.svm.SVC.html 它是基于libsvm实现的.随着样本数量的增加,拟合时间的复杂度要高于二次,这就使得当样板数量超过一万个时,很难扩展到数据集中. 在多类处理时,是按照1对1的方案进行处理的. 函数的的定义为: def __init__ (self, C=1.0, kernel='rbf', degre

  • Python 线性回归分析以及评价指标详解

    废话不多说,直接上代码吧! """ # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据集中的特征值总共10项, 如下: # 年龄 # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6 (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围. #验证就会发现任

  • 使用sklearn对多分类的每个类别进行指标评价操作

    今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score). 对于这个需求,我们可以用sklearn来解决,方法并没有难,笔者在此仅做记录,供自己以后以及读者参考. 我们模拟的数据如下: y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海'] y_pred = ['北京', '上海', '

  • Python基于sklearn库的分类算法简单应用示例

    本文实例讲述了Python基于sklearn库的分类算法简单应用.分享给大家供大家参考,具体如下: scikit-learn已经包含在Anaconda中.也可以在官方下载源码包进行安装.本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试: # coding=gbk ''' Created on 2016年6月4日 @author: bryan ''' import time from sklearn import metrics import pickle as pickle

  • phpcms的分类名称和类别名称的调用

    话不多说,请看代码: //在需要调用的模板前写这句代码,$CATEGORYS 代表分类,$TYPE 代表类别(没有这句话,调不出来) {php $CATEGORYS = getcache('category_content_'.$siteid,'commons');$TYPE = getcache('type_content','commons');} //调用 {$TYPE[$typeid]['name']} //$typeid代表分类的id(在后台可以看到) {$CATEGORYS[$cat

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • Python机器学习应用之基于LightGBM的分类预测篇解读

    目录 一.Introduction 1 LightGBM的优点 2 LightGBM的缺点 二.实现过程 1 数据集介绍 2 Coding 三.Keys LightGBM的重要参数 基本参数调整 针对训练速度的参数调整 针对准确率的参数调整 针对过拟合的参数调整 一.Introduction LightGBM是扩展机器学习系统.是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架.其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价 1 LightGBM

  • Python机器学习应用之基于天气数据集的XGBoost分类篇解读

    目录 一.XGBoost 1 XGBoost的优点 2 XGBoost的缺点 二.实现过程 1 数据集 2 实现 三.Keys XGBoost的重要参数 一.XGBoost XGBoost并不是一种模型,而是一个可供用户轻松解决分类.回归或排序问题的软件包. 1 XGBoost的优点 简单易用.相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果. 高效可扩展.在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高. 鲁棒性强.相对于深度学习模型不需要精细调参便能取得接近的

  • ajax+asp无限级分类树型结构(带数据库)

    IE测试通过,FF有点小BUG Cls_Leibie.asp 复制代码 代码如下: <% '数据库字段为类属性,添加.删除.修改.操作检查等函数为类的方法 Class Cls_Leibie Private nClassID,sClassName,nParentID,sParentPath,nDepth,nRootID,nChild,nOrderID,sFilePath '定义私有变量(类的属性,即数据库字段对应的变量) Private rs,sql,ErrorStr Private Sub Cl

  • ajax+asp无限级分类树型结构的代码

    复制代码 代码如下: <% '数据库字段为类属性,添加.删除.修改.操作检查等函数为类的方法 Class Cls_Leibie     Private nClassID,sClassName,nParentID,sParentPath,nDepth,nRootID,nChild,nOrderID,sFilePath '定义私有变量(类的属性,即数据库字段对应的变量)     Private rs,sql,ErrorStr Private Sub Class_Initialize()       

  • python类别数据数字化LabelEncoder VS OneHotEncoder区别

    目录 LabelEncoder 和 OneHotEncoder 是什么 数据集中的类别数据 LabelEncoder 和 OneHotEncoder 的区别 具体代码 LabelEncoder 和 OneHotEncoder 是什么 - 在数据处理过程中,我们有时需要对不连续的数字或者文本进行数字化处理.- 在使用 Python 进行数据处理时,用 encoder 来转化 dummy variable(虚拟数据)非常简便,encoder 可以将数据集中的文本转化成0或1的数值.- LabelEn

随机推荐