PyTorch: Softmax多分类实战操作

多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类。本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类。

MNIST数据集

MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。MNIST数据集下载地址:http://yann.lecun.com/exdb/mnist/。手写数字的MNIST数据库包括60,000个的训练集样本,以及10,000个测试集样本。

其中:

train-images-idx3-ubyte.gz (训练数据集图片)

train-labels-idx1-ubyte.gz (训练数据集标记类别)

t10k-images-idx3-ubyte.gz: (测试数据集)

t10k-labels-idx1-ubyte.gz(测试数据集标记类别)

MNIST数据集是经典图像数据集,包括10个类别(0到9)。每一张图片拉成向量表示,如下图784维向量作为第一层输入特征。

Softmax分类

softmax函数的本质就是将一个K 维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间,并且压缩后的K个值相加等于1(变成了概率分布)。在选用Softmax做多分类时,可以根据值的大小来进行多分类的任务,如取权重最大的一维。softmax介绍和公式网上很多,这里不介绍了。下面使用Pytorch定义一个多层网络(4个隐藏层,最后一层softmax概率归一化),输出层为10正好对应10类。

PyTorch实战

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# Training settings
batch_size = 64

# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/',
                train=True,
                transform=transforms.ToTensor(),
                download=True)

test_dataset = datasets.MNIST(root='./mnist_data/',
               train=False,
               transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=batch_size,
                      shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=batch_size,
                     shuffle=False)
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.l1 = nn.Linear(784, 520)
    self.l2 = nn.Linear(520, 320)
    self.l3 = nn.Linear(320, 240)
    self.l4 = nn.Linear(240, 120)
    self.l5 = nn.Linear(120, 10)

  def forward(self, x):
    # Flatten the data (n, 1, 28, 28) --> (n, 784)
    x = x.view(-1, 784)
    x = F.relu(self.l1(x))
    x = F.relu(self.l2(x))
    x = F.relu(self.l3(x))
    x = F.relu(self.l4(x))
    return F.log_softmax(self.l5(x), dim=1)
    #return self.l5(x)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):

  # 每次输入barch_idx个数据
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = Variable(data), Variable(target)

    optimizer.zero_grad()
    output = model(data)
    # loss
    loss = F.nll_loss(output, target)
    loss.backward()
    # update
    optimizer.step()
    if batch_idx % 200 == 0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.data[0]))
def test():
  test_loss = 0
  correct = 0
  # 测试集
  for data, target in test_loader:
    data, target = Variable(data, volatile=True), Variable(target)
    output = model(data)
    # sum up batch loss
    test_loss += F.nll_loss(output, target).data[0]
    # get the index of the max
    pred = output.data.max(1, keepdim=True)[1]
    correct += pred.eq(target.data.view_as(pred)).cpu().sum()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))

for epoch in range(1,6):
  train(epoch)
  test()

输出结果:
Train Epoch: 1 [0/60000 (0%)]	Loss: 2.292192
Train Epoch: 1 [12800/60000 (21%)]	Loss: 2.289466
Train Epoch: 1 [25600/60000 (43%)]	Loss: 2.294221
Train Epoch: 1 [38400/60000 (64%)]	Loss: 2.169656
Train Epoch: 1 [51200/60000 (85%)]	Loss: 1.561276

Test set: Average loss: 0.0163, Accuracy: 6698/10000 (67%)

Train Epoch: 2 [0/60000 (0%)]	Loss: 0.993218
Train Epoch: 2 [12800/60000 (21%)]	Loss: 0.859608
Train Epoch: 2 [25600/60000 (43%)]	Loss: 0.499748
Train Epoch: 2 [38400/60000 (64%)]	Loss: 0.422055
Train Epoch: 2 [51200/60000 (85%)]	Loss: 0.413933

Test set: Average loss: 0.0065, Accuracy: 8797/10000 (88%)

Train Epoch: 3 [0/60000 (0%)]	Loss: 0.465154
Train Epoch: 3 [12800/60000 (21%)]	Loss: 0.321842
Train Epoch: 3 [25600/60000 (43%)]	Loss: 0.187147
Train Epoch: 3 [38400/60000 (64%)]	Loss: 0.469552
Train Epoch: 3 [51200/60000 (85%)]	Loss: 0.270332

Test set: Average loss: 0.0045, Accuracy: 9137/10000 (91%)

Train Epoch: 4 [0/60000 (0%)]	Loss: 0.197497
Train Epoch: 4 [12800/60000 (21%)]	Loss: 0.234830
Train Epoch: 4 [25600/60000 (43%)]	Loss: 0.260302
Train Epoch: 4 [38400/60000 (64%)]	Loss: 0.219375
Train Epoch: 4 [51200/60000 (85%)]	Loss: 0.292754

Test set: Average loss: 0.0037, Accuracy: 9277/10000 (93%)

Train Epoch: 5 [0/60000 (0%)]	Loss: 0.183354
Train Epoch: 5 [12800/60000 (21%)]	Loss: 0.207930
Train Epoch: 5 [25600/60000 (43%)]	Loss: 0.138435
Train Epoch: 5 [38400/60000 (64%)]	Loss: 0.120214
Train Epoch: 5 [51200/60000 (85%)]	Loss: 0.266199

Test set: Average loss: 0.0026, Accuracy: 9506/10000 (95%)
Process finished with exit code 0

随着训练迭代次数的增加,测试集的精确度还是有很大提高的。并且当迭代次数为5时,使用这种简单的网络可以达到95%的精确度。

以上这篇PyTorch: Softmax多分类实战操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch 实现focal_loss 多类别和二分类示例

    我就废话不多说了,直接上代码吧! import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # 支持多分类和二分类 class FocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is pro

  • pytorch实现mnist分类的示例讲解

    torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具. torchvision.datasets中包含了以下数据集 MNIST COCO(用于图像标注和目标检测)(Captioning and Detection) LSUN Classification ImageFolder Imagenet-12 CIFAR10 and CIFAR100 STL10 torchvision.models torchvision.models模块的 子模块中包含以下模型结构. Ale

  • Pytorch实现神经网络的分类方式

    本文用于利用Pytorch实现神经网络的分类!!! 1.训练神经网络分类模型 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import torch.nn.functional as F import torch.utils.data as Data torch.manual_seed(1)#设置随机种子,使得每次生成的随机数是确定的 BATCH_SIZE = 5#设置batch

  • PyTorch上搭建简单神经网络实现回归和分类的示例

    本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一.PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可得到Linux下conda指令: conda install pytorch torchvision -c soumith 目前PyTorch仅支持MacOS和Linux,暂不支持Windows.安装 PyTorch 会安装两个模块,一个是torch,一个 torch

  • PyTorch: Softmax多分类实战操作

    多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类.本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类. MNIST数据集 MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口

  • pytorch训练imagenet分类的方法

    1.imagenet数据准备: a.下载数据集 b.提取training data: mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar find . -name "*.tar" | while read NAME ; do mkdi

  • pytorch 实现二分类交叉熵逆样本频率权重

    通常,由于类别不均衡,需要使用weighted cross entropy loss平衡. def inverse_freq(label): """ 输入label [N,1,H,W],1是channel数目 """ den = label.sum() # 0 _,_,h,w= label.shape num = h*w alpha = den/num # 0 return torch.tensor([alpha, 1-alpha]).cuda(

  • 基于Pytorch实现的声音分类实例代码

    目录 前言 环境准备 安装libsora 安装PyAudio 安装pydub 训练分类模型 生成数据列表 训练 预测 其他 总结 前言 本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了. 源码地址:https://github.com/yeyupiaoling/AudioClassification-Pytorch 环境准备 主要介绍libsora,PyAudio,pydub

  • PyTorch中的神经网络 Mnist 分类任务

    目录 一.Mnist 分类任务简介 二.Mnist 数据集的读取 三. Mnist 分类任务实现 四.使用 TensorDataset 和 DataLoader 简化 本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 一.Mnist 分类任务简介 在上一篇博客当中,我们通过搭建 PyTorch 神经网络实现了气温预测,这本质上是一个回归任务.在本次博文当中,我们使用 PyTorch 做一个分类任务. 其实,分类任务和回归任

  • Pytorch中Softmax和LogSoftmax的使用详解

    一.函数解释 1.Softmax函数常用的用法是指定参数dim就可以: (1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1. (2)dim=1:对每一行的所有元素进行softmax运算,并使得每一行所有元素和为1. class Softmax(Module): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that th

  • PyTorch一小时掌握之神经网络分类篇

    目录 概述 导包 设置超参数 读取数据 可视化展示 建立模型 训练模型 完整代码 概述 对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://www.jb51.net/article/222183.htm 在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务. 导包 import torchvision import to

  • Pytorch自定义CNN网络实现猫狗分类详解过程

    目录 前言 一. 数据预处理 二. 定义网络 三. 训练模型 前言 数据集下载地址: 链接: https://pan.baidu.com/s/17aglKyKFvMvcug0xrOqJdQ?pwd=6i7m Dogs vs. Cats(猫狗大战)来源Kaggle上的一个竞赛题,任务为给定一个数据集,设计一种算法中的猫狗图片进行判别. 数据集包括25000张带标签的训练集图片,猫和狗各125000张,标签都是以cat or dog命名的.图像为RGB格式jpg图片,size不一样.截图如下: 一.

随机推荐