浅谈pytorch torch.backends.cudnn设置作用
cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用
如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法
然后再设置:
torch.backends.cudnn.benchmark = true
那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题
一般来讲,应该遵循以下准则:
如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;
如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
所以我们经常看见在代码开始出两者同时设置:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
以上这篇浅谈pytorch torch.backends.cudnn设置作用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
PyTorch的深度学习入门之PyTorch安装和配置
前言 深度神经网络是一种目前被广泛使用的工具,可以用于图像识别.分类,物体检测,机器翻译等等.深度学习(DeepLearning)是一种学习神经网络各种参数的方法.因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务.本文从PyTorch环境配置开始.PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便.还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋.笔者认为,初期学习还是选择一种
-
浅析PyTorch中nn.Module的使用
torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作 torch.nn.Module 是所有神经网络单元的基类 查看源码 初始化部分: def __init__(self): self._backend = thnn_backend self._parameters = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = OrderedDict() self._forwa
-
浅谈pytorch torch.backends.cudnn设置作用
cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用 如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法 然后再设置: torch.backends.cudnn.benchmark = true 那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置
-
浅谈pytorch卷积核大小的设置对全连接神经元的影响
3*3卷积核与2*5卷积核对神经元大小的设置 #这里kerner_size = 2*5 class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类 def __init__(self): super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性 # super()需要两个实参,子类名和对象self self.conv1 = nn.Conv2d(1, 32, (2, 5), 1,
-
浅谈Pytorch torch.optim优化器个性化的使用
一.简化前馈网络LeNet import torch as t class LeNet(t.nn.Module): def __init__(self): super(LeNet, self).__init__() self.features = t.nn.Sequential( t.nn.Conv2d(3, 6, 5), t.nn.ReLU(), t.nn.MaxPool2d(2, 2), t.nn.Conv2d(6, 16, 5), t.nn.ReLU(), t.nn.MaxPool2d(2
-
浅谈Pytorch中的torch.gather函数的含义
pytorch中的gather函数 pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验. 立个flag开始学习pytorch,新开一个分类整理学习pytorch中的一些踩到的泥坑. 今天刚开始接触,读了一下documentation,写一个一开始每太搞懂的函数gather b = torch.Tensor([[1,2,3],[4,5,6]]) print b index_1 = torch.LongTensor([[0,1],[2,0]]) ind
-
浅谈pytorch中torch.max和F.softmax函数的维度解释
在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1
-
浅谈PyTorch的可重复性问题(如何使实验结果可复现)
由于在模型训练的过程中存在大量的随机操作,使得对于同一份代码,重复运行后得到的结果不一致.因此,为了得到可重复的实验结果,我们需要对随机数生成器设置一个固定的种子. 许多博客都有介绍如何解决这个问题,但是很多都不够全面,往往不能保证结果精确一致.我经过许多调研和实验,总结了以下方法,记录下来. 全部设置可以分为三部分: 1. CUDNN cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率.如果需要保证可重复性,可以使用如下设置: from torch.backends import cu
-
浅谈pytorch grad_fn以及权重梯度不更新的问题
前提:我训练的是二分类网络,使用语言为pytorch Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用 在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量. 百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下: train_pred = Variable(tr
-
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
我们经常会看到后缀名为.pt, .pth, .pkl的pytorch模型文件,这几种模型文件在格式上有什么区别吗? 其实它们并不是在格式上有区别,只是后缀不同而已(仅此而已),在用torch.save()函数保存模型文件时,各人有不同的喜好,有些人喜欢用.pt后缀,有些人喜欢用.pth或.pkl.用相同的torch.save()语句保存出来的模型文件没有什么不同. 在pytorch官方的文档/代码里,有用.pt的,也有用.pth的.一般惯例是使用.pth,但是官方文档里貌似.pt更多,而且官方也
-
浅谈PyTorch中in-place operation的含义
in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值.可以把它成为原地操作符. 在pytorch中经常加后缀"_"来代表原地in-place operation,比如说.add_() 或者.scatter().python里面的+=,*=也是in-place operation. 下面是正常的加操作,执行结束加操作之后x的值没有发生变化: import torch x=torch.rand(2) #t
-
浅谈线程通信wait,notify作用
线程通信的目的是为了能够让线程之间相互发送信号.另外,线程通信还能够使得线程等待其它线程的信号,比如,线程B可以等待线程A的信号,这个信号可以是线程A已经处理完成的信号 Wait()方法 -中断方法的执行,使本线程等待,暂时让出cpu的使用权,并允许其他线程使用这个同步方法 Notify()方法 -唤醒由于使用这个同步方而处于等待线程的某一个结束等待 Notifyall()方法 唤醒所有由于使用这个同步方法而处于等待的线程结束等待 什么时候使用wait方法 当一个线程使用的同步方法中用到某个变量
随机推荐
- 深入理解PHP中mt_rand()随机数的安全
- JS去掉字符串末尾的标点符号及删除最后一个字符的方法
- javascript中onclick(this)用法介绍
- 获取服务器传来的数据 用JS去空格的正则表达式
- php eval函数用法总结
- 深入apache host的配置详解
- C++中strcpy函数的实现
- 在centOS 7安装mysql 5.7的详细教程
- 利用JS延迟加载百度分享代码,提高网页速度
- ES6扩展运算符的用途实例详解
- php安装dblib扩展,连接mssql的具体步骤
- js禁用和激活input表单的方法
- 微信公众平台开发-微信服务器IP接口实例(含源码)
- java IO 文件操作方法总结
- 构建基于虚拟用户的vsftpd服务器应用
- JQquery的一些使用心得分享
- Ruby中处理时间的一些基本操作
- 转自Jquery官方 jQuery1.1.3发布,速度提升800%,体积保持20K
- C++设计模式之工厂模式
- python使用pil库实现图片合成实例代码