PyTorch中Tensor的数据统计示例

张量范数:torch.norm(input, p=2) → float

返回输入张量 input 的 p 范数

举个例子:

>>> import torch
>>> a = torch.full([8], 1)
>>> b = a.view(2, 4)
>>> c = a.view(2, 2, 2)
>>> a.norm(1), b.norm(1), c.norm(1)	# 求 1- 范数
(tensor(8.), tensor(8.), tensor(8.))
>>> a.norm(2), b.norm(2), c.norm(2)	# 求 2- 范数
(tensor(2.8284), tensor(2.8284), tensor(2.8284))
>>> a.norm(3), b.norm(3), c.norm(3)# 求 ∞- 范数
(tensor(2.), tensor(2.), tensor(2.))
>>> b
tensor([[1., 1., 1., 1.],
    [1., 1., 1., 1.]])
>>> b.norm(1, 1) # 在 1 维度上求 1- 范数
tensor([4., 4.])
>>> b.norm(2, 1) # 在 1 维度上求 2- 范数
b.norm(1, 2)
>>> c
tensor([[[1., 1.],
     [1., 1.]],

    [[1., 1.],
     [1., 1.]]])
>>> c.norm(1, 0) # 在 0 维度上求 1- 范数
tensor([[2., 2.],
    [2., 2.]])
>>> c.norm(2, 0) # 在 0 维度上求 2- 范数
tensor([[1.4142, 1.4142],
    [1.4142, 1.4142]])

只有一个参数时,表示对整个张量求范数,参数表示范数的幂指数值。

有两个参数时,表示在张量某一维度对尺寸中每一部分求范数,第一个参数是范数的幂指数值,第二个参数是选择的维度。

张量统计

最基础的统计方法,比如张量中的最小值、最大值、均值、累加、累积。

举个例子:

>>> a = torch.arange(8).view(2, 4).float()
>>> a
tensor([[0., 1., 2., 3.],
    [4., 5., 6., 7.]])
>>> a.min(), a.max(), a.mean(), a.sum(), a.prod() # 分别求最小值、最大值、均值、累加、累积
(tensor(0.), tensor(7.), tensor(3.5000), tensor(28.), tensor(0.))
>>> a.argmin(), a.argmax() # 分别是把张量打平后最小值、最大值的索引
(tensor(0), tensor(7))
>>> a.argmin(1), a.argmax(1) # 不打平求 1 维度中每一部分最小值、最大值的索引
(tensor([0, 0]), tensor([3, 3]))

dim和keepdim

>>> a = torch.randn(5, 10)
>>> a
tensor([[-0.6346, -0.9074, 0.1525, 0.1901, -0.5391, -0.2437, 1.0150, -0.0427,
     -1.5336, 0.8542],
    [-0.1879, 1.9947, -0.3524, -1.2559, -0.8129, -0.3018, 0.5654, 0.8428,
     -0.3517, -0.7787],
    [ 0.0686, 0.6166, 0.2632, -0.0947, -0.5592, -1.4041, 1.5565, 1.5616,
     -1.3076, -0.1137],
    [ 0.5205, -1.5716, -1.1277, 0.8096, -0.2123, -0.0974, 0.7698, 1.1373,
     0.5165, 0.5256],
    [-0.4162, 0.3170, 0.2368, 1.1695, -0.1960, -0.3285, 0.2420, 1.6468,
     0.2646, 0.4573]])
>>> a.max(dim=1)
(tensor([1.0150, 1.9947, 1.5616, 1.1373, 1.6468]), tensor([6, 1, 7, 7, 7]))
>>> a.argmax(dim=1)
tensor([6, 1, 7, 7, 7])

max 添加 dim 后不仅显示了 1 维度中每一部分的最大值,还显示了其索引

>>> a.max(dim=1, keepdim=True)
(tensor([[1.0150],
    [1.9947],
    [1.5616],
    [1.1373],
    [1.6468]]), tensor([[6],
    [1],
    [7],
    [7],
    [7]]))
>>> a.argmax(dim=1, keepdim=True)
tensor([[6],
    [1],
    [7],
    [7],
    [7]])

保持维度一致。添加 keepdim 后,得出的结果维度不改变,原来是二维的数据,得出的结果还是二维。不添加得出的结果就是一维的。

比较操作

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)

沿给定 dim 维度返回输入张量 input 中 k 个最大值。 如果不指定 dim,则默认为 input 的最后一维。 如果为 largest 为 False ,则返回最小的 k 个值。

返回一个元组 (values,indices),其中 indices 是原始输入张量 input 中测元素下标。 如果设定布尔值 sorted 为_True_,将会确保返回的 k 个值被排序。

torch.kthvalue(input, k, dim=None, out=None) -> (Tensor, LongTensor) 取输入张量 input 指定维上第 k 个最小值。如果不指定 dim,则默认为 input 的最后一维。

返回一个元组 (values,indices),其中indices是原始输入张量input中沿dim维的第 k 个最小值下标。

举个例子:

>>> b = torch.randn(5, 10)
>>> b
tensor([[ 0.1863, 0.0160, -1.0657, -1.8984, 2.3274, 0.6534, 1.8126, 1.8666,
     0.4830, -0.7800],
    [-0.9359, -1.0655, 0.8321, 1.6265, 0.6812, -0.2870, 0.6987, 0.6067,
     -0.1318, 0.7819],
    [-3.1129, 0.9571, -0.1319, -1.0016, 0.7267, 0.1060, -0.2926, 0.3492,
     1.0026, 0.2924],
    [-0.7101, -0.8327, 0.5463, 0.3805, -0.8720, -1.6723, 0.0365, 1.5540,
     0.1940, 1.4294],
    [ 0.4174, -0.9414, -0.0351, -1.6142, -0.7802, -2.3916, -2.4822, 0.7233,
     -0.7037, 0.2725]])
>>> b.topk(3, dim=1)
(tensor([[2.3274, 1.8666, 1.8126],
    [1.6265, 0.8321, 0.7819],
    [1.0026, 0.9571, 0.7267],
    [1.5540, 1.4294, 0.5463],
    [0.7233, 0.4174, 0.2725]]), tensor([[4, 7, 6],
    [3, 2, 9],
    [8, 1, 4],
    [7, 9, 2],
    [7, 0, 9]]))
>>> b.topk(3, dim=1, largest=False)
(tensor([[-1.8984, -1.0657, -0.7800],
    [-1.0655, -0.9359, -0.2870],
    [-3.1129, -1.0016, -0.2926],
    [-1.6723, -0.8720, -0.8327],
    [-2.4822, -2.3916, -1.6142]]), tensor([[3, 2, 9],
    [1, 0, 5],
    [0, 3, 6],
    [5, 4, 1],
    [6, 5, 3]]))
>>> a.kthvalue(8, dim=1)
(tensor([0.1034, 0.8940, 0.6155, 0.4210, 0.1955]), tensor([1, 2, 6, 4, 7]))

topk 添加 largest=False 就是返回最小,不添加就是返回最大。

kthvalue 返回以从大到小排列的指定位置的数。上面代码中即为返回第 8 小的数。

torch.eq(input, other, out=None) → Tensor

比较元素相等性。第二个参数可为一个数或与第一个参数同类型形状的张量。

torch.equal(tensor1, tensor2) → bool

如果两个张量有相同的形状和元素值,则返回 True ,否则 False。

举个例子:

>>> a = torch.ones(2, 3)
>>> b = torch.randn(2, 3)
>>> torch.eq(a, b)
tensor([[0, 0, 0],
    [0, 0, 0]], dtype=torch.uint8)
>>> torch.eq(a, a)
tensor([[1, 1, 1],
    [1, 1, 1]], dtype=torch.uint8)
>>> torch.equal(a, a)
True

eq 比较张量中的每个数据,equal 比较整个张量

以上这篇PyTorch中Tensor的数据统计示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 在PyTorch中Tensor的查找和筛选例子

    本文源码基于版本1.0,交互界面基于0.4.1 import torch 按照指定轴上的坐标进行过滤 index_select() 沿着某tensor的一个轴dim筛选若干个坐标 >>> x = torch.randn(3, 4) # 目标矩阵 >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230,

  • PyTorch中Tensor的拼接与拆分的实现

    拼接张量:torch.cat() .torch.stack() torch.cat(inputs, dimension=0) → Tensor 在给定维度上对输入的张量序列 seq 进行连接操作 举个例子: >>> import torch >>> x = torch.randn(2, 3) >>> x tensor([[-0.1997, -0.6900, 0.7039], [ 0.0268, -1.0140, -2.9764]]) >>&

  • 在pytorch中为Module和Tensor指定GPU的例子

    pytorch指定GPU 在用pytorch写CNN的时候,发现一运行程序就卡住,然后cpu占用率100%,nvidia-smi 查看显卡发现并没有使用GPU.所以考虑将模型和输入数据及标签指定到gpu上. pytorch中的Tensor和Module可以指定gpu运行,并且可以指定在哪一块gpu上运行,方法非常简单,就是直接调用Tensor类和Module类中的 .cuda() 方法. import torch from PIL import Image import torch.nn as

  • PyTorch中Tensor的维度变换实现

    对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size

  • 详解PyTorch中Tensor的高阶操作

    条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子: >>> import torch >>> c = randn(2, 3) >>> c tensor([[ 0.0309, -1.5993, 0.1986], [-0.0699, -2.7813, -1.1828]]) >>> a = torch.ones(2,

  • PyTorch中Tensor的数据统计示例

    张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),

  • PyTorch 中的傅里叶卷积实现示例

    卷积 卷积在数据分析中无处不在.几十年来,它们一直被用于信号和图像处理.最近,它们成为现代神经网络的重要组成部分.如果你处理数据的话,你可能会遇到错综复杂的问题. 数学上,卷积表示为: 尽管离散卷积在计算应用程序中更为常见,但在本文的大部分内容中我将使用连续形式,因为使用连续变量来证明卷积定理(下面讨论)要容易得多.之后,我们将回到离散情况,并使用傅立叶变换在 PyTorch 中实现它.离散卷积可以看作是连续卷积的近似,其中连续函数离散在规则网格上.因此,我们不会为这个离散的案例重新证明卷积定理

  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 . .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候. 举例: ten

  • PyTorch中Tensor的数据类型和运算的使用

    在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量.Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行. 常用的不同数据类型的Tensor,有32位的浮点型torch.FloatTensor,   64位浮点型 torch.DoubleTensor,   16位整形torch.ShortTenso

  • pytorch中tensor的合并与截取方法

    合并: torch.cat(inputs=(a, b), dimension=1) e.g. x = torch.cat((x,y), 0) 沿x轴合并 截取: x[:, 2:4] 以上这篇pytorch中tensor的合并与截取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • pytorch中tensor.expand()和tensor.expand_as()函数详解

    tensor.expend()函数 >>> import torch >>> a=torch.tensor([[2],[3],[4]]) >>> print(a.size()) torch.Size([3, 1]) >>> a.expand(3,2) tensor([[2, 2], [3, 3], [4, 4]]) >>> a tensor([[2], [3], [4]]) 可以看出expand()函数括号里面为变形

  • pytorch中tensor张量数据类型的转化方式

    1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) # ********************************** b=a.numpy() array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]], dtype=float32) numpy --

  • 对Pytorch中Tensor的各种池化操作解析

    AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch.ones(2,3,4) >>> a[0,1,2] = 0 >>>> a tensor([[[1., 1., 1., 1.], [1., 1., 0., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1.,

  • 详解Python中生成随机数据的示例详解

    目录 随机性有多随机 加密安全性 PRNG random 模块 数组 numpy.random 相关数据的生成 random模块与NumPy对照表 CSPRNG 尽可能随机 os.urandom() secrets 最佳保存方式 UUID 工程随机性的比较 在日常工作编程中存在着各种随机事件,同样在编程中生成随机数字的时候也是一样,随机有多随机呢?在涉及信息安全的情况下,它是最重要的问题之一.每当在 Python 中生成随机数据.字符串或数字时,最好至少大致了解这些数据是如何生成的. 用于在 P

随机推荐