tensorflow指定CPU与GPU运算的方法实现

1.指定GPU运算

如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测。如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作。

如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的。为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行。with......device语句能够用来指派特定的CPU或者GPU执行操作:

import tensorflow as tf
import numpy as np

with tf.Session() as sess:
  with tf.device('/cpu:0'):
    a = tf.placeholder(tf.int32)
    b = tf.placeholder(tf.int32)
    add = tf.add(a, b)
    sum = sess.run(add, feed_dict={a: 3, b: 4})
    print(sum)

设备的字符串标识,当前支持的设备包括以下的几种:

cpu:0 机器的第一个cpu。

gpu:0 机器的第一个gpu,如果有的话

gpu:1 机器的第二个gpu,依次类推

类似的还有tf.ConfigProto来构建一个config,在config中指定相关的GPU,并且在session中传入参数config=“自己创建的config”来指定gpu操作

其中,tf.ConfigProto函数的参数如下:

log_device_placement=True: 是否打印设备分配日志

allow_soft_placement=True: 如果指定的设备不存在,允许TF自动分配设备

import tensorflow as tf
import numpy as np

config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)

with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

2.设置GPU使用资源

上文的tf.ConfigProto函数生成的config之后,还可以设置其属性来分配GPU的运算资源,如下代码就是按需分配

import tensorflow as tf
import numpy as np

config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)
config.gpu_options.allow_growth = True

with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

使用allow_growth option,刚开始会分配少量的GPU容量,然后按需要慢慢的增加,有与不会释放内存,随意会导致内存碎片。

同样,上述的代码也可以在config创建时指定,

import tensorflow as tf
import numpy as np

gpu_options = tf.GPUOptions(allow_growth=True)
config = tf.ConfigProto(gpu_options=gpu_options)

with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

我们还可以给gpu分配固定大小的计算资源。

gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.5)

上述代码的含义是分配给tensorflow的GPU显存大小为:GPU的实际显存*0.5

到此这篇关于tensorflow指定CPU与GPU运算的方法实现的文章就介绍到这了,更多相关tensorflow指定CPU与GPU运算内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • win10系统Anaconda和Pycharm的Tensorflow2.0之CPU和GPU版本安装教程

    tf2.0的三个优点: 1.方便搭建网络架构: 2.自动求导 3.GPU加速(便于大数据计算) 安装过程(概要提示) step1:安装annaconda3 step2:安装pycharm step3:安装tensorflow2.0 cpu版本 (1)进入anaconda prompt(anaconda3) (2)默认为(base)环境 (3)输入python,查看python版本:输入exit()退出 (4)输入conda info --envs查看虚拟环境 (5)此处以在(base)环境中安装

  • 基于Tensorflow使用CPU而不用GPU问题的解决

    之前的文章讲过用Tensorflow的object detection api训练MobileNetV2-SSDLite,然后发现训练的时候没有利用到GPU,反而CPU占用率贼高(可能会有Could not dlopen library 'libcudart.so.10.0'之类的警告).经调查应该是Tensorflow的GPU版本跟服务器所用的cuda及cudnn版本不匹配引起的.知道问题所在之后就好办了. 检查cuda和cudnn版本  首先查看cuda版本: cat /usr/local/

  • 在tensorflow中设置使用某一块GPU、多GPU、CPU的操作

    tensorflow下设置使用某一块GPU(从0开始编号): import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" 多GPU: num_gpus = 4 for i in range(num_gpus): with tf.device('/gpu:%d',%i): ... 只是用cpu的

  • 运行tensorflow python程序,限制对GPU和CPU的占用操作

    一般情况下,运行tensorflow时,默认会占用可以看见的所有GPU,那么就会导致其它用户或程序无GPU可用,那么就需要限制程序对GPU的占用.并且,一般我们的程序也用不了所有的GPU资源,只是强行霸占着,大部分资源都不会用到,也不会提升运行速度. 使用nvidia-smi可以查看本机的GPU使用情况,如下图,这里可以看出,本机的GPU型号是K80,共有两个K80,四块可用(一个K80包括两块K40). 1.如果是只需要用某一块或某几块GPU,可以在运行程序时,利用如下命令运行:CUDA_VI

  • tensorflow指定CPU与GPU运算的方法实现

    1.指定GPU运算 如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测.如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作. 如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的.为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行.with......device语句能够用来指派特定的CPU或者GPU执行操作: import tensorflow as tf import numpy as np w

  • 将Pytorch模型从CPU转换成GPU的实现方法

    最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了. 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了"高大上"GPU版本. 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来. 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给

  • 基于tensorflow指定GPU运行及GPU资源分配的几种方式小结

    1. 在终端执行时设置使用哪些GPU(两种方式) (1) 如下(export 语句执行一次就行了,以后再运行代码不用执行) (2) 如下 2. 代码中指定(两种方式) (1) import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" (2) # Creates a graph. with tf.device('/gpu:1'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0],

  • 解决TensorFlow程序无限制占用GPU的方法

    今天遇到一个奇怪的现象,使用tensorflow-gpu的时候,出现内存超额~~如果我训练什么大型数据也就算了,关键我就写了一个y=W*x-显示如下图所示: 程序如下: import tensorflow as tf w = tf.Variable([[1.0,2.0]]) b = tf.Variable([[2.],[3.]]) y = tf.multiply(w,b) init_op = tf.global_variables_initializer() with tf.Session()

  • Window10上Tensorflow的安装(CPU和GPU版本)

    之前摸索tensorflow的时候安装踩坑的时间非常久,主要是没搞懂几个东西的关系,就在瞎调试,以及当时很多东西不懂,很多报错也一知半解的.这次重装系统后正好需要再配置一次,把再一次的经历记录一下.我的电脑是华为的matebook13,intel i5-8625U,MX250显卡,win10系统.(不得不吐槽很垃圾,只能满足测试测试调调代码的需求) 深度学习利用Tensorflow平台,其中的Keras Sequential API对新用户非常的友好,可以将各基础组件组合在一起来构建模型. (官

  • Tensorflow中使用cpu和gpu有什么区别

    目录 使用cpu和gpu的区别 一些术语的比较(tensorflow和pytorch/cpu和gpu/) tensorflow和pytorch cpu和gpu cuda 使用cpu和gpu的区别 在Tensorflow中使用gpu和cpu是有很大的差别的.在小数据集的情况下,cpu和gpu的性能差别不大. 不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显. 不过,我的笔记本电脑的风扇终于全功率运行了. import tensorflow as tf import timeit

  • tensorflow指定GPU与动态分配GPU memory设置

    在tensorflow中,默认指定占用所有的GPU,如需指定占用的GPU,可以在命令行中: export CUDA_VISIBLE_DEVICES=1 这样便是只占用1号GPU,通过命令 nvidia-smi 可以查看各个GPU的使用情况. 另外,也可以在python程序中指定GPU,并且动态分配memory,代码如下 import os import sys os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1] import tensorflow a

  • tensorflow:指定gpu 限制使用量百分比,设置最小使用量的实现

    在Python代码中指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" 设置定量的GPU使用量: config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存 session = tf.Session(config=config) 设置最小的GPU使用量: config =

  • Win10 GPU运算环境搭建(CUDA10.0+Cudnn 7.6.5+pytroch1.2+tensorflow1.14.0)

    目录 一.深度学习为什么要搭建GPU运算环境? 什么是CUDA? 什么是Cudnn? 二.搭建GPU运算环境 CUDA的下载 Cudnn的下载 三.Ananconda3的安装 什么是Anaconda? 下载Anaconda3 四.Anaconda虚拟环境的搭建 什么是虚拟环境? 虚拟环境的相关操作 五.选择要搭建的深度学习框架 Pytorch的安装 检查环境和GPU运算是否搭建成功 Tensorflow的安装 五.心得和一些建议 一.深度学习为什么要搭建GPU运算环境? 熟悉深度学习的人都知道,

随机推荐