Python实现基于标记的分水岭分割算法
目录
- 1. 原理
- 2.代码实现
- 2.1 利用OpenCV和c++实现分水岭算法
- 2.2 Python实现分水岭分割(1)
- 2.3 Python实现分水岭分割(2)
分水岭技术是一种众所周知的分割算法,特别适用于提取图片中的相邻或重叠对象。使用分水岭方法时,我们必须从用户定义的标记开始。这些标记可以使用点击手动定义,也可以使用阈值或形态学处理方法定义。
分水岭技术将输入图像中的像素视为基于这些标记的局部极小值(称为地形)——该方法从标记向外“淹没”山谷,直到各种标记的山谷相遇。为了产生准确的分水岭分割,必须准确地设置标记。
我们使用一种基于OpenCV标记的分水岭技术来指定哪些谷点应该合并,哪些不应该合并。它是一种交互式图像分割,而不是自动图像分割。
1. 原理
任何灰度图像都可以看作是一个地形表面,高峰代表高强度,山谷代表低强度。首先,用各种颜色的水(标签)填充孤立的山谷(局部极小值)。来自不同山谷的河流,颜色明显不同,随着水位上升,根据相邻的山峰(梯度)开始融合。为了避免这种情况,在水与水相遇的地方建造了屏障。你不断注水,设置障碍,直到所有的山峰都被淹没,分割结果由创建的障碍决定。
然而,由于图像中存在噪声或其他异常,该方法会产生过分割的结果。因此,OpenCV创建了一个基于标记的分水岭方法,允许您选择哪些谷点应该合并,哪些不应该合并。它是一种交互式图像分割方法。我们所做的就是给每一个前景物体区域贴上不同的标签,我们不确定的区域是标签记为0。然后,使用分水岭算法。获得的结果中,对象的边界值将为-1。
2.代码实现
2.1 利用OpenCV和c++实现分水岭算法
#include <iostream> #include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <vector> void showImg(const std::string& windowName,const cv::Mat& img){ cv::imshow(windowName,img); } void getBackground(const cv::Mat& source,cv::Mat& dst) { cv::dilate(source,dst,cv::Mat::ones(3,3,CV_8U)); //Kernel 3x3 } void getForeground(const cv::Mat& source,cv::Mat& dst) { cv::distanceTransform(source,dst,cv::DIST_L2,3,CV_32F); cv::normalize(dst, dst, 0, 1, cv::NORM_MINMAX); } void findMarker(const cv::Mat& sureBg,cv::Mat& markers, std::vector<std::vector<cv::Point>>& contours) { cv::findContours(sureBg,contours,cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); // Draw the foreground markers for (size_t i = 0,size = contours.size(); i < size; i++) drawContours(markers, contours, static_cast<int>(i), cv::Scalar(static_cast<int>(i)+1), -1); } void getRandomColor(std::vector<cv::Vec3b>& colors,size_t size) { for (int i = 0; i < size ; ++i) { int b = cv::theRNG().uniform(0, 256); int g = cv::theRNG().uniform(0, 256); int r = cv::theRNG().uniform(0, 256); colors.emplace_back(cv::Vec3b((uchar)b, (uchar)g, (uchar)r)); } } int main (int argc,char** argv) { // 读取图片 if(argc < 2) { std::cerr << "Error\n"; std::cerr << "Provide Input Image:\n<program> <inputimage>\n"; return -1; } cv::Mat original_img = cv::imread(argv[1]); if(original_img.empty()) { std::cerr << "Error\n"; std::cerr << "Cannot Read Image\n"; return -1; } // 去除图像中的噪声, 均值偏移模糊(MeanShift)是一种图像边缘保留滤波算法,常用于图像分水岭分割前的去噪,可显着提高分水岭分割效果。 cv::Mat shifted; cv::pyrMeanShiftFiltering(original_img,shifted,21,51); showImg("Mean Shifted",shifted); // 将原始图像转换为灰度和二值图像 cv::Mat gray_img; cv::cvtColor(original_img,gray_img,cv::COLOR_BGR2GRAY); showImg("GrayIMg",gray_img); cv::Mat bin_img; cv::threshold(gray_img,bin_img,0,255,cv::THRESH_BINARY | cv::THRESH_OTSU); showImg("thres img",bin_img); // 寻找确定的背景图像, 在这一步中,我们找到图像中的背景区域。 cv::Mat sure_bg; getBackground(bin_img,sure_bg); showImg("Sure Background",sure_bg); // 找到确定前景的图像, 对于图像的前景,我们采用距离变换算法 cv::Mat sure_fg; getForeground(bin_img,sure_fg); showImg("Sure ForeGround",sure_fg); // 找到标记,在应用分水岭算法之前,我们需要标记。为此,我们将使用opencv中提供的findContour()函数来查找图像中的标记。 cv::Mat markers = cv::Mat::zeros(sure_bg.size(),CV_32S); std::vector<std::vector<cv::Point>> contours; findMarker(sure_bg,markers,contours); cv::circle(markers, cv::Point(5, 5), 3, cv::Scalar(255), -1); //Drawing Circle around the marker // 应用分水岭算法 cv::watershed(original_img,markers); cv::Mat mark; markers.convertTo(mark, CV_8U); cv::bitwise_not(mark, mark); //黑变白,白变黑 showImg("MARKER",mark); //高亮显示图像中的标记 std::vector<cv::Vec3b> colors; getRandomColor(colors,contours.size()); //构建结果图像 cv::Mat dst = cv::Mat::zeros(markers.size(), CV_8UC3); // 用随机的颜色填充已标记的物体 for (int i = 0; i < markers.rows; i++) { for (int j = 0; j < markers.cols; j++) { int index = markers.at<int>(i,j); if (index > 0 && index <= static_cast<int>(contours.size())) dst.at<cv::Vec3b>(i,j) = colors[index-1]; } } showImg("Final Result",dst); cv::waitKey(0); return 0; }
结果展示:
2.2 Python实现分水岭分割(1)
import cv2 as cv import numpy as np import argparse import random as rng rng.seed(12345) parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\ Sample code showing how to segment overlapping objects using Laplacian filtering, \ in addition to Watershed and Distance Transformation') parser.add_argument('--input', help='Path to input image.', default='HFOUG.jpg') args = parser.parse_args() src = cv.imread(cv.samples.findFile(args.input)) if src is None: print('Could not open or find the image:', args.input) exit(0) # Show source image cv.imshow('Source Image', src) cv.waitKey() gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) # noise removal kernel = np.ones((5, 5), np.uint8) opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2) # 获取背景图 sure_bg = opening.copy() # 背景 # Show output image cv.imshow('Black Background Image', sure_bg) # 黑色是背景 cv.waitKey() # 获取前景图 dist = cv.distanceTransform(opening, cv.DIST_L2, 3) # Normalize the distance image for range = {0.0, 1.0} # so we can visualize and threshold it cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow('Distance Transform Image', dist) _, dist = cv.threshold(dist, 0.2, 1.0, cv.THRESH_BINARY) # Dilate a bit the dist image kernel1 = np.ones((3, 3), dtype=np.uint8) dist = cv.dilate(dist, kernel1) cv.imshow('Peaks', dist) # 构建初始markers dist_8u = dist.astype('uint8') # Find total markers contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 创建即将应用分水岭算法的标记图像 markers = np.zeros(dist.shape, dtype=np.int32) # 标记前景 for i in range(len(contours)): cv.drawContours(markers, contours, i, (i + 1), -1) # 轮廓标记从1开始 # 标记背景 cv.circle(markers, (5, 5), 3, 255, -1) # 此处背景标记为255 print("before watershed: ", np.unique(markers)) # 0表示不确定标记区域 # 可视化markers markers_8u = (markers * 10).astype('uint8') cv.imshow('Markers', markers_8u) cv.waitKey() # 应用分水岭分割算法 markers = cv.watershed(src, markers) print("after watershed: ", np.unique(markers)) # -1表示边界 # mark = np.zeros(markers.shape, dtype=np.uint8) mark = markers.astype('uint8') mark = cv.bitwise_not(mark) # uncomment this if you want to see how the mark # image looks like at that point # cv.imshow('Markers_v2', mark) # Generate random colors colors = [] for contour in contours: colors.append((rng.randint(0, 256), rng.randint(0, 256), rng.randint(0, 256))) # Create the result image dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8) # Fill labeled objects with random colors for i in range(markers.shape[0]): for j in range(markers.shape[1]): index = markers[i, j] if index > 0 and index <= len(contours): # -1表示边界, 255表示背景 dst[i, j, :] = colors[index - 1] # Visualize the final image cv.imshow('Final Result', dst) cv.waitKey()
结果展示:
2.3 Python实现分水岭分割(2)
import cv2 as cv import numpy as np import argparse import random as rng def process_img2(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0.1) img_gray = cv2.medianBlur(img_gray, 5) _, image_binary = cv2.threshold(img_gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) kernel = np.ones((7, 7), np.uint8) # sure_bg = cv.morphologyEx(image_binary, cv.MORPH_CLOSE, kernel, iterations=3) sure_bg = cv.dilate(image_binary, kernel, iterations=2) sure_bg = cv.bitwise_not(sure_bg) element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) image_binary = cv2.morphologyEx(image_binary, cv2.MORPH_OPEN, element) imageSC = cv2.distanceTransform(image_binary, cv2.DIST_L2, 5) imageSC = imageSC.astype(np.uint8) imageSC = cv2.normalize(imageSC, 0, 255, cv2.NORM_MINMAX) _, imageSC = cv2.threshold(imageSC, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) return imageSC, sure_bg rng.seed(12345) imgPath = "HFOUG.jpg" src = cv.imread(imgPath) shifted = cv2.pyrMeanShiftFiltering(src, 7, 15) if src is None: print('Could not open or find the image:') # print('Could not open or find the image:', args.input) exit(0) # Show source image cv.imshow('Source Image', src) cv.waitKey() opening, sure_bg = process_img2(shifted) # Show output image cv.imshow('Background Image', sure_bg) # 背景 cv.waitKey() # 获取前景图 dist = cv.distanceTransform(opening, cv.DIST_L2, 3) # Normalize the distance image for range = {0.0, 1.0} # so we can visualize and threshold it cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow('Distance Transform Image', dist) _, dist = cv.threshold(dist, 0.3, 1.0, cv.THRESH_BINARY) # Dilate a bit the dist image kernel1 = np.ones((3, 3), dtype=np.uint8) dist = cv.dilate(dist, kernel1) cv.imshow('Peaks', dist) # 构建初始markers dist_8u = dist.astype('uint8') # Find total markers contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 创建即将应用分水岭算法的标记图像 # markers = np.zeros(dist.shape, dtype=np.int32) markers = sure_bg.copy().astype(np.int32) # 标记前景 for i in range(len(contours)): cv.drawContours(markers, contours, i, (i + 1), -1) # 轮廓标记从1开始 # 标记背景 # cv.circle(markers, (5, 5), 3, 255, -1) # 此处背景标记为255 # 可视化markers print("before watershed: ", np.unique(markers)) # 0表示不确定标记区域 markers_8u = (markers * 10).astype('uint8') cv.imshow('Markers', markers_8u) # 应用分水岭分割算法 markers = cv.watershed(src, markers) print("after watershed: ", np.unique(markers)) # -1表示边界 # mark = np.zeros(markers.shape, dtype=np.uint8) mark = markers.astype('uint8') mark = cv.bitwise_not(mark) cv.imshow('Markers_v2', mark) # Generate random colors colors = [] for contour in contours: colors.append((rng.randint(0, 256), rng.randint(0, 256), rng.randint(0, 256))) # Create the result image dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8) # Fill labeled objects with random colors for i in range(markers.shape[0]): for j in range(markers.shape[1]): index = markers[i, j] if index > 0 and index <= len(contours): # -1表示边界, 255表示背景 dst[i, j, :] = colors[index - 1] # Visualize the final image cv.imshow('Final Result', dst) cv.waitKey(0) cv2.destroyAllWindows()
结果展示:
到此这篇关于Python实现基于标记的分水岭分割算法的文章就介绍到这了,更多相关Python分水岭分割算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)