np.array()函数的使用方法

目录
  • 函数调用方法:
  • 普通用法:
  • 进阶用法:
  • 更高级的用法:

函数调用方法:

numpy.array(object, dtype=None)

各个参数意义:

  • object:创建的数组的对象,可以为单个值,列表,元胞等。
  • dtype:创建数组中的数据类型。
  • 返回值:给定对象的数组。

普通用法:

import numpy as np

array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

print("数组array的值为: ")
print(array)
print("数组array的默认类型为: ")
print(array.dtype)
"""
result:
数组array的值为: 
[0 1 2 3 4 5 6 7 8 9]
数组array的默认类型为: 
int32
"""

我们可以看到,我们成功创建了给定元素的数组,并且创建数组的默认类型为np.int32类型。

进阶用法:

import numpy as np

array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float32)

print("数组array的值为: ")
print(array)
print("数组array的默认类型为: ")
print(array.dtype)
"""
result:
数组array的值为: 
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
数组array的默认类型为: 
float32
"""

我们成功创建了给定元素的数组,并且创建数组的默认类型为np.float32类型。

更高级的用法:

import numpy as np

array = np.array((1, 2), dtype=[('x', np.int8), ('y', np.int16)])

print("数组array的值为: ")
print(array)
print("数组array的默认类型为: ")
print(array.dtype)
print("数组array中对应x标签元素为: ")
print(array['x'])
print("数组array中对应y标签元素为: ")
print(array['y'])
"""
result:
数组array的值为: 
(1, 2)
数组array的默认类型为: 
[('x', 'i1'), ('y', '<i2')]
数组array中对应x标签元素为: 
1
数组array中对应y标签元素为: 
2
"""

我们可以看到,我们在创建数组的同时,可以设定其中单个元素的数据类型,这里的'i1'指代的便是np.int8类型,'i2'指代的是'np.int16'类型。读者可以自行尝试,这里不做过多讨论,后续也许会补充说明。

最高级的用法:

import numpy as np

# Create rain data
n_drops = 10

rain_drops = np.zeros(n_drops, dtype=[('position', float, (2,)),
                                      ('size', float),
                                      ('growth', float),
                                      ('color', float, (4,))])

# Initialize the raindrops in random positions and with
# random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops)

print(rain_drops)
"""
result:
[([0.70284885, 0.03590322], 0., 176.4511602 , [0., 0., 0., 0.])
 ([0.60838294, 0.49185854], 0.,  60.51037667, [0., 0., 0., 0.])
 ([0.86525398, 0.65607663], 0., 168.00795695, [0., 0., 0., 0.])
 ([0.25812877, 0.14484747], 0.,  80.17753717, [0., 0., 0., 0.])
 ([0.66021716, 0.90449213], 0., 121.94125106, [0., 0., 0., 0.])
 ([0.88306332, 0.51074725], 0.,  92.4377108 , [0., 0., 0., 0.])
 ([0.68916433, 0.89543162], 0.,  90.77596431, [0., 0., 0., 0.])
 ([0.7105655 , 0.68628326], 0., 144.88783652, [0., 0., 0., 0.])
 ([0.6894679 , 0.90203559], 0., 167.40736266, [0., 0., 0., 0.])
 ([0.92558218, 0.34232054], 0.,  93.48654986, [0., 0., 0., 0.])]
"""

到此这篇关于np.array()函数的使用方法的文章就介绍到这了,更多相关np.array()使用内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python将txt文件读入为np.array的方法

    原文件: 7.8094,1.0804,5.7632,0.012269,0.008994,-0.003469,-0.79279,-0.064686,0.11635,0.68827,5.7169,7.9329,0.010264,0.003557,-0.011691,-0.57559,-0.56121, 原文件数据比较多,是一个125行,45类float数字. 代码: # -*- coding: utf-8 -*- import numpy as np def readFile(path): # 打开

  • 浅谈numpy中np.array()与np.asarray的区别以及.tolist

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) 从中我们可以看出np.array与np.asarray功能是一样的,都是将输入转为矩阵格式.当输入是列表的时候,更改

  • 浅谈python中np.array的shape( ,)与( ,1)的区别

    如下所示: >>> import numpy as np >>> x = np.array([1, 2]) >>> y = np.array([[1],[2]]) >>> z = np.array([[1,2]]) >>> print(x.shape) (2,) >>> print(y.shape) (2, 1) >>> print(z.shape) (1, 2) x[1,2]的s

  • Numpy np.array()函数使用方法指南

    目录 1.Numpy ndarray对象 2.创建numpy数组 总结 1.Numpy ndarray对象 numpy ndarray对象是一个n维数组对象,ndarray只能存储一系列相同元素. #一维数组 [1,2,3,4] #shape(4,) #二维数组 [[1,2,3,4]] #shape(1,4) [[1,2,3,4], [5,6,7,8]] #shape(2,4) #三维数组 [ [[1,2,3],[4,5,6]], [[7,8,9],[10,11,12]] ] #shape(2,

  • Pandas实现dataframe和np.array的相互转换

    网上找了半天 不是dataframe转化成array的就是array转化dataframe,所以这里给汇总一下,相互转换的python代如下: dataframe转化成array df=df.values array转化成dataframe import pandas as pd df = pd.DataFrame(df) 这样就OK了! 以上这篇Pandas实现dataframe和np.array的相互转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • np.array()函数的使用方法

    目录 函数调用方法: 普通用法: 进阶用法: 更高级的用法: 函数调用方法: numpy.array(object, dtype=None) 各个参数意义: object:创建的数组的对象,可以为单个值,列表,元胞等. dtype:创建数组中的数据类型. 返回值:给定对象的数组. 普通用法: import numpy as np array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print("数组array的值为: ") print(ar

  • np.zeros()函数的使用方法

    目录 函数调用方法: 基础用法: 进阶用法: 最高级的用法: 函数调用方法: numpy.zeros(shape, dtype=float) 各个参数意义: shape:创建的新数组的形状(维度). dtype:创建新数组的数据类型. 返回值:给定维度的全零数组. 基础用法: import numpy as np array = np.zeros([2, 3]) print(array) print(array.dtype) """ result: [[0. 0. 0.]  

  • Python astype(np.float)函数使用方法解析

    我的数据库如图 结构 我取了其中的name age nr,做成array,只要所取数据存在str型,那么取出的数据,全部转化为str型,也就是array阵列的元素全是str,不管数据库定义的是不是int型. 那么问题来了,取出的数据代入公式进行计算的时候,就会类型不符,这是就用到astype(np.float) 代码如下 import pymysql import numpy as np conn = pymysql.connect(host='39.106.168.84', user='xxx

  • np.concatenate()函数的具体使用

    目录 引言 函数调用 调用方法 各个参数的意义 注意事项 示例1------一维数组 示例2------二维数组 示例3------三维数组 引言 提到 numpy 的数组操作,我们就不得不说到 np.concatenate() 函数,concatenate 一词在英文中是级联的意思,我们可以简单地理解为连接,拼接. 函数调用 调用方法 numpy.concatenate((a1, a2, ...), axis=0, out=None) 各个参数的意义 (a1, a2, ...):数组序列,注意

  • VBS教程:函数-Array 函数

    Array 函数返回包含数组的 Variant. Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔).如果没有指定此参数,则将会创建零长度的数组. 说明用于引用数组元素的表示符,由跟随有括号的变量名组成,括号中包含指示所需元素的索引号.在下面的示例中,第一条语句创建名为 A 的变量.第二条语句将一个数组赋值给变量 A.最后一条语句将包含在第二个数组元素中的值赋值给另一个变量. Dim AA = Array(10,20,30)B =

  • javascript中利用柯里化函数实现bind方法

    柯理化函数思想:一个js预先处理的思想:利用函数执行可以形成一个不销毁的作用域的原理,把需要预先处理的内容都储存在这个不销毁的作用域中,并且返回一个小函数,以后我们执行的都是小函数,在小函数中把之前预先存储的值进行相关的操作处理即可: 柯里化函数主要起到预处理的作用: bind方法的作用:把传递进来的callback回调方法中的this预先处理为上下文context; /** * bind方法实现原理1 * @param callback [Function] 回调函数 * @param con

  • PHP实现在windows下配置sendmail并通过mail()函数发送邮件的方法

    本文实例讲述了PHP实现在windows下配置sendmail并通过mail()函数发送邮件的方法.分享给大家供大家参考,具体如下: 1.php mail()函数在windows不能用,需要安装sendmail. 2.从http://glob.com.au/sendmail/ 下载sendmail组件 3.解压sendmail.zip到目录下,我安装的路径是: F:\root\sendMail 4.配置php.ini,主要配置以下3项 5.修改 sendmail.ini,文件路径:F:\root

  • ThinkPHP自动完成中使用函数与回调方法实例

    本文实例讲述了ThinkPHP自动完成中使用函数与回调方法.分享给大家供大家参考.具体方法如下: ThinkPHP 自动填充格式如下: 复制代码 代码如下: array(填充字段,填充内容[,填充条件][,附加规则]) 附加规则,可选,包括: string:字符串,表示填充内容为字符串(默认). function:使用函数,表示填充的内容是一个函数返回值. callback:使用方法,表示填充的内容是一个当前 Model 的方法返回值. field:字段,表示填充的内容是一个其他字段的值. Th

随机推荐