Python中的高级数据结构详解

数据结构

  数据结构的概念很好理解,就是用来将数据组织在一起的结构。换句话说,数据结构是用来存储一系列关联数据的东西。在Python中有四种内建的数据结构,分别是List、Tuple、Dictionary以及Set。大部分的应用程序不需要其他类型的数据结构,但若是真需要也有很多高级数据结构可供选择,例如Collection、Array、Heapq、Bisect、Weakref、Copy以及Pprint。本文将介绍这些数据结构的用法,看看它们是如何帮助我们的应用程序的。

关于四种内建数据结构的使用方法很简单,并且网上有很多参考资料,因此本文将不会讨论它们。

1. Collections

  collections模块包含了内建类型之外的一些有用的工具,例如Counter、defaultdict、OrderedDict、deque以及nametuple。其中Counter、deque以及defaultdict是最常用的类。

1.1 Counter()

  如果你想统计一个单词在给定的序列中一共出现了多少次,诸如此类的操作就可以用到Counter。来看看如何统计一个list中出现的item次数:

代码如下:

from collections import Counter
 
li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a # Counter({'Dog': 3, 42: 2, 'Cat': 2, 'Mouse': 1})

若要统计一个list中不同单词的数目,可以这么用:

代码如下:

from collections import Counter
 
li = ["Dog", "Cat", "Mouse", 42, "Dog", 42, "Cat", "Dog"]
a = Counter(li)
print a # Counter({'Dog': 3, 42: 2, 'Cat': 2, 'Mouse': 1})
 
print len(set(li)) # 4

如果需要对结果进行分组,可以这么做:

代码如下:

from collections import Counter
 
li = ["Dog", "Cat", "Mouse","Dog","Cat", "Dog"]
a = Counter(li)
 
print a # Counter({'Dog': 3, 'Cat': 2, 'Mouse': 1})
 
print "{0} : {1}".format(a.values(),a.keys())  # [1, 3, 2] : ['Mouse', 'Dog', 'Cat']
 
print(a.most_common(3)) # [('Dog', 3), ('Cat', 2), ('Mouse', 1)]

以下的代码片段找出一个字符串中出现频率最高的单词,并打印其出现次数。

代码如下:

import re
from collections import Counter
 
string = """   Lorem ipsum dolor sit amet, consectetur
    adipiscing elit. Nunc ut elit id mi ultricies
    adipiscing. Nulla facilisi. Praesent pulvinar,
    sapien vel feugiat vestibulum, nulla dui pretium orci,
    non ultricies elit lacus quis ante. Lorem ipsum dolor
    sit amet, consectetur adipiscing elit. Aliquam
    pretium ullamcorper urna quis iaculis. Etiam ac massa
    sed turpis tempor luctus. Curabitur sed nibh eu elit
    mollis congue. Praesent ipsum diam, consectetur vitae
    ornare a, aliquam a nunc. In id magna pellentesque
    tellus posuere adipiscing. Sed non mi metus, at lacinia
    augue. Sed magna nisi, ornare in mollis in, mollis
    sed nunc. Etiam at justo in leo congue mollis.
    Nullam in neque eget metus hendrerit scelerisque
    eu non enim. Ut malesuada lacus eu nulla bibendum
    id euismod urna sodales.  """
 
words = re.findall(r'\w+', string) #This finds words in the document
 
lower_words = [word.lower() for word in words] #lower all the words
 
word_counts = Counter(lower_words) #counts the number each time a word appears
print word_counts
 
# Counter({'elit': 5, 'sed': 5, 'in': 5, 'adipiscing': 4, 'mollis': 4, 'eu': 3,
# 'id': 3, 'nunc': 3, 'consectetur': 3, 'non': 3, 'ipsum': 3, 'nulla': 3, 'pretium':
# 2, 'lacus': 2, 'ornare': 2, 'at': 2, 'praesent': 2, 'quis': 2, 'sit': 2, 'congue': 2, 'amet': 2,
# 'etiam': 2, 'urna': 2, 'a': 2, 'magna': 2, 'lorem': 2, 'aliquam': 2, 'ut': 2, 'ultricies': 2, 'mi': 2,
# 'dolor': 2, 'metus': 2, 'ac': 1, 'bibendum': 1, 'posuere': 1, 'enim': 1, 'ante': 1, 'sodales': 1, 'tellus': 1,
# 'vitae': 1, 'dui': 1, 'diam': 1, 'pellentesque': 1, 'massa': 1, 'vel': 1, 'nullam': 1, 'feugiat': 1, 'luctus': 1,
# 'pulvinar': 1, 'iaculis': 1, 'hendrerit': 1, 'orci': 1, 'turpis': 1, 'nibh': 1, 'scelerisque': 1, 'ullamcorper': 1,
# 'eget': 1, 'neque': 1, 'euismod': 1, 'curabitur': 1, 'leo': 1, 'sapien': 1, 'facilisi': 1, 'vestibulum': 1, 'nisi': 1,
# 'justo': 1, 'augue': 1, 'tempor': 1, 'lacinia': 1, 'malesuada': 1})

1.2 Deque

  Deque是一种由队列结构扩展而来的双端队列(double-ended queue),队列元素能够在队列两端添加或删除。因此它还被称为头尾连接列表(head-tail linked list),尽管叫这个名字的还有另一个特殊的数据结构实现。

  Deque支持线程安全的,经过优化的append和pop操作,在队列两端的相关操作都能够达到近乎O(1)的时间复杂度。虽然list也支持类似的操作,但是它是对定长列表的操作表现很不错,而当遇到pop(0)和insert(0, v)这样既改变了列表的长度又改变其元素位置的操作时,其复杂度就变为O(n)了。

  来看看相关的比较结果:

代码如下:

import time
from collections import deque
 
num = 100000
 
def append(c):
    for i in range(num):
        c.append(i)
 
def appendleft(c):
    if isinstance(c, deque):
        for i in range(num):
            c.appendleft(i)
    else:
        for i in range(num):
            c.insert(0, i)
def pop(c):
    for i in range(num):
        c.pop()
 
def popleft(c):
    if isinstance(c, deque):
        for i in range(num):
            c.popleft()
    else:
        for i in range(num):
            c.pop(0)
 
for container in [deque, list]:
    for operation in [append, appendleft, pop, popleft]:
        c = container(range(num))
        start = time.time()
        operation(c)
        elapsed = time.time() - start
        print "Completed {0}/{1} in {2} seconds: {3} ops/sec".format(
              container.__name__, operation.__name__, elapsed, num / elapsed)
 
# Completed deque/append in 0.0250000953674 seconds: 3999984.74127 ops/sec
# Completed deque/appendleft in 0.0199999809265 seconds: 5000004.76838 ops/sec
# Completed deque/pop in 0.0209999084473 seconds: 4761925.52225 ops/sec
# Completed deque/popleft in 0.0199999809265 seconds: 5000004.76838 ops/sec
# Completed list/append in 0.0220000743866 seconds: 4545439.17637 ops/sec
# Completed list/appendleft in 21.3209998608 seconds: 4690.21155917 ops/sec
# Completed list/pop in 0.0240001678467 seconds: 4166637.52682 ops/sec
# Completed list/popleft in 4.01799988747 seconds: 24888.0046791 ops/sec

另一个例子是执行基本的队列操作:

代码如下:

from collections import deque
q = deque(range(5))
q.append(5)
q.appendleft(6)
print q
print q.pop()
print q.popleft()
print q.rotate(3)
print q
print q.rotate(-1)
print q
 
# deque([6, 0, 1, 2, 3, 4, 5])
# 5
# 6
# None
# deque([2, 3, 4, 0, 1])
# None
# deque([3, 4, 0, 1, 2])

译者注:rotate是队列的旋转操作,Right rotate(正参数)是将右端的元素移动到左端,而Left rotate(负参数)则相反。

1.3 Defaultdict

  这个类型除了在处理不存在的键的操作之外与普通的字典完全相同。当查找一个不存在的键操作发生时,它的default_factory会被调用,提供一个默认的值,并且将这对键值存储下来。其他的参数同普通的字典方法dict()一致,一个defaultdict的实例同内建dict一样拥有同样地操作。

  defaultdict对象在当你希望使用它存放追踪数据的时候很有用。举个例子,假定你希望追踪一个单词在字符串中的位置,那么你可以这么做:

代码如下:

from collections import defaultdict
 
s = "the quick brown fox jumps over the lazy dog"
 
words = s.split()
location = defaultdict(list)
for m, n in enumerate(words):
    location[n].append(m)
 
print location
 
# defaultdict(<type 'list'>, {'brown': [2], 'lazy': [7], 'over': [5], 'fox': [3],
# 'dog': [8], 'quick': [1], 'the': [0, 6], 'jumps': [4]})

是选择lists或sets与defaultdict搭配取决于你的目的,使用list能够保存你插入元素的顺序,而使用set则不关心元素插入顺序,它会帮助消除重复元素。

代码如下:

from collections import defaultdict
 
s = "the quick brown fox jumps over the lazy dog"
 
words = s.split()
location = defaultdict(set)
for m, n in enumerate(words):
    location[n].add(m)
 
print location
 
# defaultdict(<type 'set'>, {'brown': set([2]), 'lazy': set([7]),
# 'over': set([5]), 'fox': set([3]), 'dog': set([8]), 'quick': set([1]),
# 'the': set([0, 6]), 'jumps': set([4])})

另一种创建multidict的方法:

代码如下:

s = "the quick brown fox jumps over the lazy dog"
d = {}
words = s.split()
 
for key, value in enumerate(words):
    d.setdefault(key, []).append(value)
print d
 
# {0: ['the'], 1: ['quick'], 2: ['brown'], 3: ['fox'], 4: ['jumps'], 5: ['over'], 6: ['the'], 7: ['lazy'], 8: ['dog']}

一个更复杂的例子:

代码如下:

class Example(dict):
    def __getitem__(self, item):
        try:
            return dict.__getitem__(self, item)
        except KeyError:
            value = self[item] = type(self)()
            return value
 
a = Example()
 
a[1][2][3] = 4
a[1][3][3] = 5
a[1][2]['test'] = 6
 
print a # {1: {2: {'test': 6, 3: 4}, 3: {3: 5}}}

2. Array
  array模块定义了一个很像list的新对象类型,不同之处在于它限定了这个类型只能装一种类型的元素。array元素的类型是在创建并使用的时候确定的。

  如果你的程序需要优化内存的使用,并且你确定你希望在list中存储的数据都是同样类型的,那么使用array模块很合适。举个例子,如果需要存储一千万个整数,如果用list,那么你至少需要160MB的存储空间,然而如果使用array,你只需要40MB。但虽然说能够节省空间,array上几乎没有什么基本操作能够比在list上更快。

  在使用array进行计算的时候,需要特别注意那些创建list的操作。例如,使用列表推导式(list comprehension)的时候,会将array整个转换为list,使得存储空间膨胀。一个可行的替代方案是使用生成器表达式创建新的array。看代码:

代码如下:

import array
 
a = array.array("i", [1,2,3,4,5])
b = array.array(a.typecode, (2*x for x in a))

  因为使用array是为了节省空间,所以更倾向于使用in-place操作。一种更高效的方法是使用enumerate:

代码如下:

import array
 
a = array.array("i", [1,2,3,4,5])
for i, x in enumerate(a):
    a[i] = 2*x

 对于较大的array,这种in-place修改能够比用生成器创建一个新的array至少提升15%的速度。

  那么什么时候使用array呢?是当你在考虑计算的因素之外,还需要得到一个像C语言里一样统一元素类型的数组时。

代码如下:

import array
from timeit import Timer
 
def arraytest():
    a = array.array("i", [1, 2, 3, 4, 5])
    b = array.array(a.typecode, (2 * x for x in a))
 
def enumeratetest():
    a = array.array("i", [1, 2, 3, 4, 5])
    for i, x in enumerate(a):
        a[i] = 2 * x
 
if __name__=='__main__':
    m = Timer("arraytest()", "from __main__ import arraytest")
    n = Timer("enumeratetest()", "from __main__ import enumeratetest")
 
    print m.timeit() # 5.22479210582
    print n.timeit() # 4.34367196717

3.Heapq

  heapq模块使用一个用堆实现的优先级队列。堆是一种简单的有序列表,并且置入了堆的相关规则。

  堆是一种树形的数据结构,树上的子节点与父节点之间存在顺序关系。二叉堆(binary heap)能够用一个经过组织的列表或数组结构来标识,在这种结构中,元素N的子节点的序号为2*N+1和2*N+2(下标始于0)。简单来说,这个模块中的所有函数都假设序列是有序的,所以序列中的第一个元素(seq[0])是最小的,序列的其他部分构成一个二叉树,并且seq[i]节点的子节点分别为seq[2*i+1]以及seq[2*i+2]。当对序列进行修改时,相关函数总是确保子节点大于等于父节点。

代码如下:

import heapq
 
heap = []
 
for value in [20, 10, 30, 50, 40]:
    heapq.heappush(heap, value)
 
while heap:
    print heapq.heappop(heap)

  heapq模块有两个函数nlargest()和nsmallest(),顾名思义,让我们来看看它们的用法。

代码如下:

import heapq
 
nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]

两个函数也能够通过一个键参数使用更为复杂的数据结构,例如:

代码如下:

import heapq
 
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
 
print cheap
 
# [{'price': 16.35, 'name': 'YHOO', 'shares': 45},
# {'price': 21.09, 'name': 'FB', 'shares': 200}, {'price': 31.75, 'name': 'HPQ', 'shares': 35}]
 
print expensive
 
# [{'price': 543.22, 'name': 'AAPL', 'shares': 50}, {'price': 115.65, 'name': 'ACME',
# 'shares': 75}, {'price': 91.1, 'name': 'IBM', 'shares': 100}]

  来看看如何实现一个根据给定优先级进行排序,并且每次pop操作都返回优先级最高的元素的队列例子。

代码如下:

import heapq
 
class Item:
    def __init__(self, name):
        self.name = name
 
    def __repr__(self):
        return 'Item({!r})'.format(self.name)
 
class PriorityQueue:
    def __init__(self):
        self._queue = []
        self._index = 0
 
    def push(self, item, priority):
        heapq.heappush(self._queue, (-priority, self._index, item))
        self._index += 1
 
    def pop(self):
        return heapq.heappop(self._queue)[-1]
 
q = PriorityQueue()
q.push(Item('foo'), 1)
q.push(Item('bar'), 5)
q.push(Item('spam'), 4)
q.push(Item('grok'), 1)
 
print q.pop() # Item('bar')
print q.pop() # Item('spam')
print q.pop() # Item('foo')
print q.pop() # Item('grok')

4. Bisect

  bisect模块能够提供保持list元素序列的支持。它使用了二分法完成大部分的工作。它在向一个list插入元素的同时维持list是有序的。在某些情况下,这比重复的对一个list进行排序更为高效,并且对于一个较大的list来说,对每步操作维持其有序也比对其排序要高效。

  假设你有一个range集合:

代码如下:

a = [(0, 100), (150, 220), (500, 1000)]

  如果我想添加一个range (250, 400),我可能会这么做:

代码如下:

import bisect
 
a = [(0, 100), (150, 220), (500, 1000)]
 
bisect.insort_right(a, (250,400))
 
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]

  我们可以使用bisect()函数来寻找插入点:

代码如下:

import bisect
 
a = [(0, 100), (150, 220), (500, 1000)]
 
bisect.insort_right(a, (250,400))
bisect.insort_right(a, (399, 450))
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]
 
print bisect.bisect(a, (550, 1200)) # 5

  bisect(sequence, item) => index 返回元素应该的插入点,但序列并不被修改。

代码如下:

import bisect
 
a = [(0, 100), (150, 220), (500, 1000)]
 
bisect.insort_right(a, (250,400))
bisect.insort_right(a, (399, 450))
print a # [(0, 100), (150, 220), (250, 400), (500, 1000)]
 
print bisect.bisect(a, (550, 1200)) # 5
bisect.insort_right(a, (550, 1200))
print a # [(0, 100), (150, 220), (250, 400), (399, 450), (500, 1000), (550, 1200)]

新元素被插入到第5的位置。

5. Weakref

  weakref模块能够帮助我们创建Python引用,却不会阻止对象的销毁操作。这一节包含了weak reference的基本用法,并且引入一个代理类。

  在开始之前,我们需要明白什么是strong reference。strong reference是一个对对象的引用次数、生命周期以及销毁时机产生影响的指针。strong reference如你所见,就是当你将一个对象赋值给一个变量的时候产生的:

代码如下:

>>> a = [1,2,3]
>>> b = a

  在这种情况下,这个列表有两个strong reference,分别是a和b。在这两个引用都被释放之前,这个list不会被销毁。

代码如下:

class Foo(object):
    def __init__(self):
        self.obj = None
        print 'created'
 
    def __del__(self):
        print 'destroyed'
 
    def show(self):
        print self.obj
 
    def store(self, obj):
        self.obj = obj
 
a = Foo() # created
b = a
del a
del b # destroyed

 Weak reference则是对对象的引用计数器不会产生影响。当一个对象存在weak reference时,并不会影响对象的撤销。这就说,如果一个对象仅剩下weak reference,那么它将会被销毁。

  你可以使用weakref.ref函数来创建对象的weak reference。这个函数调用需要将一个strong reference作为第一个参数传给函数,并且返回一个weak reference。

代码如下:

>>> import weakref
>>> a = Foo()
created
>>> b = weakref.ref(a)
>>> b

  一个临时的strong reference可以从weak reference中创建,即是下例中的b():

代码如下:

>>> a == b()
True
>>> b().show()
None

  请注意当我们删除strong reference的时候,对象将立即被销毁。

代码如下:

>>> del a
destroyed

  如果试图在对象被摧毁之后通过weak reference使用对象,则会返回None:

代码如下:

>>> b() is None
True

若是使用weakref.proxy,就能提供相对于weakref.ref更透明的可选操作。同样是使用一个strong reference作为第一个参数并且返回一个weak reference,proxy更像是一个strong reference,但当对象不存在时会抛出异常。

代码如下:

>>> a = Foo()
created
>>> b = weakref.proxy(a)
>>> b.store('fish')
>>> b.show()
fish
>>> del a
destroyed
>>> b.show()
Traceback (most recent call last):
  File "", line 1, in ?
ReferenceError: weakly-referenced object no longer exists

完整的例子:
  引用计数器是由Python的垃圾回收器使用的,当一个对象的应用计数器变为0,则其将会被垃圾回收器回收。

  最好将weak reference用于开销较大的对象,或避免循环引用(虽然垃圾回收器经常干这种事情)。

代码如下:

import weakref
import gc
 
class MyObject(object):
    def my_method(self):
        print 'my_method was called!'
 
obj = MyObject()
r = weakref.ref(obj)
 
gc.collect()
assert r() is obj #r() allows you to access the object referenced: it's there.
 
obj = 1 #Let's change what obj references to
gc.collect()
assert r() is None #There is no object left: it was gc'ed.

  提示:只有library模块中定义的class instances、functions、methods、sets、frozen sets、files、generators、type objects和certain object types(例如sockets、arrays和regular expression patterns)支持weakref。内建函数以及大部分内建类型如lists、dictionaries、strings和numbers则不支持。

6. Copy()

  通过shallow或deep copy语法提供复制对象的函数操作。

  shallow和deep copying的不同之处在于对于混合型对象的操作(混合对象是包含了其他类型对象的对象,例如list或其他类实例)。

1.对于shallow copy而言,它创建一个新的混合对象,并且将原对象中其他对象的引用插入新对象。
2.对于deep copy而言,它创建一个新的对象,并且递归地复制源对象中的其他对象并插入新的对象中。

  普通的赋值操作知识简单的将心变量指向源对象。

代码如下:

import copy
 
a = [1,2,3]
b = [4,5]
 
c = [a,b]
 
# Normal Assignment
d = c
 
print id(c) == id(d)          # True - d is the same object as c
print id(c[0]) == id(d[0])    # True - d[0] is the same object as c[0]
 
# Shallow Copy
d = copy.copy(c)
 
print id(c) == id(d)          # False - d is now a new object
print id(c[0]) == id(d[0])    # True - d[0] is the same object as c[0]
 
# Deep Copy
d = copy.deepcopy(c)
 
print id(c) == id(d)          # False - d is now a new object
print id(c[0]) == id(d[0])    # False - d[0] is now a new object

shallow copy (copy())操作创建一个新的容器,其包含的引用指向原对象中的对象。

deep copy (deepcopy())创建的对象包含的引用指向复制出来的新对象。

  复杂的例子:

  假定我有两个类,名为Manager和Graph,每个Graph包含了一个指向其manager的引用,而每个Manager有一个指向其管理的Graph的集合,现在我们有两个任务需要完成:

  1) 复制一个graph实例,使用deepcopy,但其manager指向为原graph的manager。

  2) 复制一个manager,完全创建新manager,但拷贝原有的所有graph。

代码如下:

import weakref, copy
 
class Graph(object):
    def __init__(self, manager=None):
        self.manager = None if manager is None else weakref.ref(manager)
    def __deepcopy__(self, memodict):
        manager = self.manager()
        return Graph(memodict.get(id(manager), manager))
 
class Manager(object):
    def __init__(self, graphs=[]):
        self.graphs = graphs
        for g in self.graphs:
            g.manager = weakref.ref(self)
 
a = Manager([Graph(), Graph()])
b = copy.deepcopy(a)
 
if [g.manager() is b for g in b.graphs]:
    print True # True
 
if copy.deepcopy(a.graphs[0]).manager() is a:
    print True # True

7. Pprint()

Pprint模块能够提供比较优雅的数据结构打印方式,如果你需要打印一个结构较为复杂,层次较深的字典或是JSON对象时,使用Pprint能够提供较好的打印结果。

假定你需要打印一个矩阵,当使用普通的print时,你只能打印出普通的列表,不过如果使用pprint,你就能打出漂亮的矩阵结构

如果

代码如下:

import pprint
 
matrix = [ [1,2,3], [4,5,6], [7,8,9] ]
a = pprint.PrettyPrinter(width=20)
a.pprint(matrix)
 
# [[1, 2, 3],
#  [4, 5, 6],
#  [7, 8, 9]]

额外的知识

一些基本的数据结构

1. 单链链表

代码如下:

class Node:
    def __init__(self):
        self.data = None
        self.nextNode = None
 
    def set_and_return_Next(self):
        self.nextNode = Node()
        return self.nextNode
 
    def getNext(self):
        return self.nextNode
 
    def getData(self):
        return self.data
 
    def setData(self, d):
        self.data = d
 
class LinkedList:
    def buildList(self, array):
        self.head = Node()
        self.head.setData(array[0])
        self.temp = self.head
        for i in array[1:]:
            self.temp = self.temp.set_and_return_Next()
            self.temp.setData(i)
            self.tail = self.temp
        return self.head
    def printList(self):
        tempNode = self.head
        while(tempNode!=self.tail):
            print(tempNode.getData())
            tempNode = tempNode.getNext()
        print(self.tail.getData())
myArray = [3, 5, 4, 6, 2, 6, 7, 8, 9, 10, 21]
 
myList = LinkedList()
myList.buildList(myArray)
myList.printList()

2. 用Python实现的普林姆算法

  译者注:普林姆算法(Prims Algorithm)是图论中,在加权连通图中搜索最小生成树的算法。

代码如下:

from collections import defaultdict
from heapq import heapify, heappop, heappush
 
def prim( nodes, edges ):
    conn = defaultdict( list )
    for n1,n2,c in edges:
        conn[ n1 ].append( (c, n1, n2) )
        conn[ n2 ].append( (c, n2, n1) )
 
    mst = []
    used = set( nodes[ 0 ] )
    usable_edges = conn[ nodes[0] ][:]
    heapify( usable_edges )
 
    while usable_edges:
        cost, n1, n2 = heappop( usable_edges )
        if n2 not in used:
            used.add( n2 )
            mst.append( ( n1, n2, cost ) )
 
            for e in conn[ n2 ]:
                if e[ 2 ] not in used:
                    heappush( usable_edges, e )
    return mst
 
#test
nodes = list("ABCDEFG")
edges = [ ("A", "B", 7), ("A", "D", 5),
          ("B", "C", 8), ("B", "D", 9), ("B", "E", 7),
      ("C", "E", 5),
      ("D", "E", 15), ("D", "F", 6),
      ("E", "F", 8), ("E", "G", 9),
      ("F", "G", 11)]
 
print "prim:", prim( nodes, edges )

总结

  如果想了解更多地数据结构信息请参阅相关文档。谢谢阅读。

(0)

相关推荐

  • Python过滤函数filter()使用自定义函数过滤序列实例

    filter函数: filter()函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项传到自定义的过滤函数里处理,并返回结果做过滤.最终一次性返回过滤后的结果. filter()函数有两个参数: 第一个,自定函数名,必须的 第二个,需要过滤的列,也是必须的 DEMO 需求,过滤大于5小于10的数: 复制代码 代码如下: # coding=utf8 # 定义大于5小于10的函数 def guolvhanshu(num):     if num>5 and num<

  • 跟老齐学Python之集合(set)

    回顾一下已经了解的数据类型:int/str/bool/list/dict/tuple 还真的不少了. 不过,python是一个发展的语言,没准以后还出别的呢.看官可能有疑问了,出了这么多的数据类型,我也记不住呀,特别是里面还有不少方法. 不要担心记不住,你只要记住爱因斯坦说的就好了. 爱因斯坦在美国演讲,有人问:"你可记得声音的速度是多少?你如何记下许多东西?" 爱因斯坦轻松答道:"声音的速度是多少,我必须查辞典才能回答.因为我从来不记在辞典上已经印着的东西,我的记忆力是用来

  • python计算一个序列的平均值的方法

    本文实例讲述了python计算一个序列的平均值的方法.分享给大家供大家参考.具体如下: def average(seq, total=0.0): num = 0 for item in seq: total += item num += 1 return total / num 如果序列是数组或者元祖可以简单使用下面的代码 def average(seq): return float(sum(seq)) / len(seq) 希望本文所述对大家的Python程序设计有所帮助.

  • Python中集合类型(set)学习小结

    set 是一个无序的元素集合,支持并.交.差及对称差等数学运算, 但由于 set 不记录元素位置,因此不支持索引.分片等类序列的操作. 初始化 复制代码 代码如下: s0 = set() d0 = {} s1 = {0} s2 = {i % 2 for i in range(10)} s = set('hi') t = set(['h', 'e', 'l', 'l', 'o']) print(s0, s1, s2, s, t, type(d0)) 运行结果: 复制代码 代码如下: set() {

  • Python对两个有序列表进行合并和排序的例子

    假设有2个有序列表l1.l2,如何效率比较高的将2个list合并并保持有序状态,这里默认排序是正序. 思路是比较简单的,无非是依次比较l1和l2头部第一个元素,将比较小的放在一个新的列表中,以此类推,直到所有的元素都被放到新的列表中. 考虑2个列表l1 = [2], l2 = [1],如何将他们合并呢?(注意:下面实现会改变l1和l2本来的值) 复制代码 代码如下: def signle_merge_sort(l1, l2):    tmp = []    if l1[0] < l2[0]:  

  • Python中列表、字典、元组、集合数据结构整理

    本文详细归纳整理了Python中列表.字典.元组.集合数据结构.分享给大家供大家参考.具体分析如下: 列表: 复制代码 代码如下: shoplist = ['apple', 'mango', 'carrot', 'banana'] 字典: 复制代码 代码如下: di = {'a':123,'b':'something'} 集合: 复制代码 代码如下: jihe = {'apple','pear','apple'} 元组: 复制代码 代码如下: t = 123,456,'hello' 1.列表 空

  • Python字符串、元组、列表、字典互相转换的方法

    废话不多说了,直接给大家贴代码了,代码写的不好还去各位大侠见谅. #-*-coding:utf-8-*- #1.字典 dict = {'name': 'Zara', 'age': 7, 'class': 'First'} #字典转为字符串,返回:<type 'str'> {'age': 7, 'name': 'Zara', 'class': 'First'} print type(str(dict)), str(dict) #字典可以转为元组,返回:('age', 'name', 'class

  • Python set集合类型操作总结

    Python中除了字典,列表,元组还有一个非常好用的数据结构,那就是set了,灵活的运用set可以减去不少的操作(虽然set可以用列表代替) 小例子 1.如果我要在许多列表中找出相同的项,那么用集合是最好不过的了,用集合只用一行就可以解决 复制代码 代码如下: x & y & z # 交集 2.去重 复制代码 代码如下: >>> lst = [1,2,3,4,1] >>> print list(set(lst)) [1, 2, 3, 4] 用法 注意se

  • python列表与元组详解实例

    在这章中引入了数据结构的概念.数据结构是通过某种方式组织在一起的数据元素的集合.在python中,最基本的数据结构就是序列.序列中的每个元素被分配一个序号,即元素的位置,也被称为索引.注意:第一个索引是0.1.序列概览python有6种内建的序列:列表,元组,字符串,Unicode字符串,buffer对象和xrange对象. 这里重点介绍列表和元组.列表和元组主要区别在于,列表可以修改,元组不可修改.一般来说,在几乎所有情况下列表都可以代替元组.在需要操作一组数值的时候,序列很好用: 复制代码

  • Python中3种内建数据结构:列表、元组和字典

    Python中有3种内建的数据结构:列表.元组和字典.参考简明Python教程 1. 列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个 序列 的项目.假想你有一个购物列表,上面记载着你要买的东西,你就容易理解列表了.只不过在你的购物表上,可能每样东西都独自占有一行,而在Python中,你在每个项目之间用逗号分割. 列表中的项目应该包括在方括号中,这样Python就知道你是在指明一个列表.一旦你创建了一个列表,你可以添加.删除或是搜索列表中的项目.由于你可以增加或删除项目,

  • Python内建数据结构详解

    一.列表(List) list 是一个可以在其中存储一系列项目的数据结构.list 的项目之间需用逗号分开,并用一对中括号括将所有的项目括起来,以表明这是一个 list .下例用以展示 list 的一些基本操作: # 定义一个 list 对象 class_list: class_list = ['Michael', 'Bob', 'Tracy'] # 获得一个 class_list 的长度 print 'class have', len(class_list), 'students' # 访问c

  • Python常见数据结构详解

    本文详细罗列归纳了Python常见数据结构,并附以实例加以说明,相信对读者有一定的参考借鉴价值. 总体而言Python中常见的数据结构可以统称为容器(container).而序列(如列表和元组).映射(如字典)以及集合(set)是三类主要的容器. 一.序列(列表.元组和字符串) 序列中的每个元素都有自己的编号.Python中有6种内建的序列.其中列表和元组是最常见的类型.其他包括字符串.Unicode字符串.buffer对象和xrange对象.下面重点介绍下列表.元组和字符串. 1.列表 列表是

随机推荐