Python环境搭建之OpenCV的步骤方法

一、openCV介绍

Open Source Computer Vision Library.OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、MacOS操作系统上。它轻量级而且高效——由一系列 C 函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。最新版本是3.1 ,2016年1月29日发布。

简言之,通过openCV可实现计算机图像、视频的编辑。广泛应用于图像识别、运动跟踪、机器视觉等领域。

二、环境

本文适用于win7 64位系统 下的Python3.5。python3.5、pip为必备前提。python可在官网下载:https://www.python.org/downloads/windows/,建议使用exe installer,pip会随之安装。

  环境变量中加入python安装路径,我的是 C:\Program Files\Python35\Scripts\;C:\Program Files\Python35\; 注意分号。

三、开搞

一切就绪以后以管理员身份运行cmd或PowerShell。依次输入以下命令:

pip install --upgrade setuptools
pip install numpy Matplotlib
pip install opencv-python

opencv环境已经整好,就是这么简单。只需要numpy、Matplotlib、opencv-python三个包,都不大很快就可以下好,如果下载中间出现error或wrong,重新输入命令即可。

如果多次下载失败,可以从http://www.lfd.uci.edu/~gohlke/pythonlibs/直接下载whl包安装,安装whl包依然使用pip

pip install 包的位置(如:C:\download\xxx.whl)

四、测试

写.py脚本:

#导入cv模块
import cv2 as cv
#读取图像,支持 bmp、jpg、png、tiff 等常用格式
img = cv.imread("D:\python\test.jpg")
#创建窗口并显示图像
cv.namedWindow("Image")
cv.imshow("Image",img)
cv.waitKey(0)
#释放窗口
cv2.destroyAllWindows()

运行以上脚本,如果可以显示出测试的图像,则环境搭建成功

opencv的学习,推荐网站www.opencv.org.cn,是中文的教程哦!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python中使用OpenCV库来进行简单的气象学遥感影像计算

    OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库.OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用.OpenCV可用于开发实时的图像处理.计算机视觉以及模式识别程序.该程序库也可以使用英特尔公司的IPP进行加速处理. OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口.该库也有大量的Python, Java and MATLAB/OCTAVE

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • python使用opencv读取图片的实例

    安装好环境后,开始了第一个Hello word 例子,如何读取图片,保存图品 import cv2 import numpy as np import matplotlib.pyplot as plt #读取图片代码 img = cv2.imread('test.jpg',cv2.IMREAD_GRAYSCALE) #IMREAD_COLOR = 1 #IMREAD_UNCHANGED = -1 #展示图片 cv2.imshow('image',img) cv2.waitKey(0) cv2.d

  • 在树莓派2或树莓派B+上安装Python和OpenCV的教程

    我的Raspberry Pi 2昨天刚邮到,这家伙看上去很小巧可爱. 这小家伙有4核900MHZ的处理器,1G内存.要知道,Raspberry Pi 2 可比我中学电脑实验室里大多数电脑快多了. 话说,自从Raspberry Pi 2发布以来,我收到了很多请求,要求我能写一个在它上面安装OpenCV和Python的详细说明. 因此如果你想在Raspberry Pi启动运行OpenCV和Python,就往下面看! 在博文的剩余部分,我将提供在Raspberry Pi 2 和Raspberry Pi

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • 在Python下利用OpenCV来旋转图像的教程

    OpenCV是应用最被广泛的的开源视觉库.他允许你使用很少的代码来检测图片或视频中的人脸. 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并没有处理旋转一个图片里的矩形一般会把矩形的边角切掉这一问题,所以产生的图片需要修改.当正确的使用一点代码时,这是一点瑕疵. def rotate_about_center(src, angle, scale=1.): w = src.shape[1] h = src.shape[0] ran

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python环境搭建之OpenCV的步骤方法

    一.openCV介绍 Open Source Computer Vision Library.OpenCV于1999年由Intel建立,如今由Willow Garage提供支持.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.MacOS操作系统上.它轻量级而且高效--由一系列 C 函数和少量C++类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.最新版本是3.1 ,2016年1

  • python环境下安装opencv库的方法

    注意:安装opencv之前需要先安装numpy,matplotlib等 一.安装方法 方法一.在线安装 1.先安装opencv-python pip install opencv-python --user 我的python版本是3.6.8,可以看到opencv安装的默认版本是 opencv_python-4.1.0.25-cp36-cp36m-win_amd64.whl 2.再安装opencv-contrib-python pip install opencv-contrib-python -

  • 深度学习环境搭建anaconda+pycharm+pytorch的方法步骤

    目录 显卡 驱动 cuda anaconda 1. 下载安装 2. 安装pytorch虚拟环境 3. conda常用指令 pycahrm / jupyter 下载安装 如何建好的虚拟环境的解释器找出来指派给代码? 本文将详细介绍一下如何搭建深度学习所需要的实验环境. 这个框架分为以下六个模块 显卡 简单理解这个就是我们常说的GPU,显卡的功能是一个专门做矩阵运算的部件,用于显示方面的运算,现在神经网络中绝大操作都是对矩阵的运算,所以我们当然可以将显卡的矩阵运算功能应用起来,来提高计算速度. 驱动

  • python基础入门学习笔记(Python环境搭建)

    Python学习第一篇.把之前学习的Python基础知识总结一下. 一.认识Python 首先我们得清楚这个:Python这个名字是从Monty Python借鉴过来的,而不是源于大家所知道的大蟒蛇的意思.我们为什么要学习Python呢?就我而言,我知道豆瓣在使用.重视Python,加上我想学习网页爬虫技术,所以,我要学习Python编程.另外在国外,Yahoo和Google都在使用Python.那么,Python就很值得我们认真学习. 二.Hello,World! 首先我们需要安装Python

  • python环境搭建和pycharm的安装配置及汉化(零基础小白版)

    前言:写这篇文章主要是介绍一下python的环境搭建和pycharm的安装配置,适合零基础的同学观看.这篇文章你会学到python的环境搭建和python比较好用的IDE pycharm的安装与基础配置. 运行环境:window 64位操作系统. 没想到这么多的人看这篇文章,并且接连不断给我发邮箱,问问题,这篇文章不是用markdown写的,不好改,我重新写了一份,放在我的博客里面,这里是地址:https://yaoguangju.github.io/2018/12/27/python%E7%8

  • python环境搭建和pycharm的安装配置及汉化详细教程(零基础小白版)

    目录 一.python环境的搭建 1.下载python(这里以python3.6为例) 2.安装python(这里以python3.6为例) 二.pycharm的安装与配置 1.pycharm的下载 2.pycharm的安装 3.pycharm的入门基础配置 4.pycharm的python解释器的搭建 5.pycharm的建立一个新项目 6.pycharm汉化 前言:写这篇文章主要是介绍一下python的环境搭建和pycharm的安装配置,适合零基础的同学观看.这篇文章你会学到python的环

  • python 环境变量和import模块导入方法(详解)

    1.定义 模块:本质就是.py结尾的文件(逻辑上组织python代码)模块的本质就是实现一个功能 文件名就是模块名称 包: 一个有__init__.py的文件夹:用来存放模块文件 2.导入模块 import 模块名 form 模块名 import * from 模块名 import 模块名 as 新名称 3. 导入模块本质 import 模块名 ===> 将模块中所有的数据赋值给模块名,调用时需要模块名.方法名() from 模块名 import 方法名 ==>将该方法单独放到当前文件运行一遍

  • Python环境搭建过程从安装到Hello World

    开发环境 安装最新版Python 下载地址:https://www.python.org/downloads/ 运行Python 1.交互方式运行 用自带的IDLE 打开cmd输入python 2.程序方式运行 新建hello.py print("Hello World") #打印语句 input() #输入(起暂停作用) 直接双击该文件 用cmd运行 UNIX/Linux下,也是python+文件名,记得用chomod命令设置执行权限 %python hello.py %./hell

  • python 环境搭建 及python-3.4.4的下载和安装过程

    第一步:下载和安装python-3.4.4amd.msi 可以去官方网站下载,也可以从网盘下载: 链接: https://pan.baidu.com/s/1hLn2y51lHiTGXCj-69ZrPw 提取码: j3pk 双击此文件,一路安装下去,这里就不再列出来了. 第二步:配置环境变量 方便使用python命令和pip命令.这一步需要配置2个环境变量. 1.配置python.exe的路径: 将python的安装目录配置到环境变量的path当中.怎么配置环境变量?百度吧 比如python安装在

  • windows系统下Python环境搭建教程

    windows系统下Python环境的搭建 step1:下载Python程序 https://www.python.org/downloads/release/python-351/ 选择第一个下载下来(随随便下载哪个) step2:安装及配置环境 点击程序默认安装 step3:开发配置环境 电脑->系统->高级系统设置->环境变量->系统变量->path变量追加Python的安装路径 step:测试python安装是否成功 cmd打开命令行输入 python 命令 输入内容

随机推荐