遗传算法之Python实现代码

写在前面

之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了。

Python的遗传算法主函数

我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness。因此我们就可以通过直接建立对象来作为种群中的个体。

#染色体的类
class Chrom:
  chrom = []
  fitness = 0
  def showChrom(self):
    print(self.chrom)
  def showFitness(self):
    print(self.fitness)

所以我们开始设置基础参数。其中种群的表达方式我用的是字典,也就是用一个字典来保存种群内的所有个体,这个也是我想出来的创建多个对象的方法。

将字典的索引为个体的标号,如:chrom1, chrom2等。字典索引的值就是一个对象。这个对象拥有两个属性,就是染色体与适应度。

其实在这一方便来说,我觉得在思路上是优于利用MATLAB的矩阵式编程的。因为这样可以很直观的将个体与个体的属性这一种思想给表达出来,相比一堆矩阵来说,在逻辑上比较容易接受。

#基础参数
N = 200 #种群内个体数目
mut = 0.2 #突变概率
acr = 0.2 #交叉概率

pop = {} #存储染色体的字典
for i in range(N):
  pop['chrom'+str(i)] = Chrom()
chromNodes = 2 #染色体节点数(变量个数)
iterNum = 10000 #迭代次数
chromRange = [[0, 10], [0, 10]] #染色体范围
aveFitnessList = [] #平均适应度
bestFitnessList = [] #最优适应度

之后就是初始染色体了,其中就牵扯到了各种用来初始化种群、计算适应度、找最优等函数,我在这里分出了两个文件,分别为Genetic.py与Fitness.py。

Genetic.py里面有八个函数,主要包含了作用于种群或者染色体操作的函数,分别为:

  1. findBest函数,用于寻找种群中的最优染色体;
  2. findworse函数,用于寻找种群中的最劣染色体;
  3. initialize函数,用于初始化种群;
  4. calAveFitness函数,用于计算种群的平均适应度;
  5. mutChrom函数,用于对染色体进行变异;
  6. inRange函数,用于判断染色体节点值是否越界;
  7. acrChrom函数,用于对染色体进行交叉;
  8. compareChrom函数,用于比较两个染色体孰优孰劣。

Fitness.py里面有两个函数,主要包含了对适应度操作的函数,分别为:

  1. calFitness函数,用来迭代每一个个体,并计算适应度(利用funcFitness函数计算);
  2. funcFitness函数,计算单个个体的适应度。

因此可以列出初始化代码为

#初始染色体
pop = Genetic.initialize(pop, chromNodes, chromRange)
pop = Fitness.calFitness(pop) #计算适应度
bestChrom = Genetic.findBest(pop) #寻找最优染色体
bestFitnessList.append(bestChrom[1]) #将当前最优适应度压入列表中
aveFitnessList.append(Genetic.calAveFitness(pop, N)) #计算并存储平均适应度

迭代过程的思路和逻辑与MATLAB无异

#开始迭代
for t in range(iterNum):
  #染色体突变
  pop = Genetic.mutChrom(pop, mut, chromNodes, bestChrom, chromRange)
  #染色体交换
  pop = Genetic.acrChrom(pop, acr, chromNodes)
  #寻找最优
  nowBestChrom = Genetic.findBest(pop)
  #比较前一个时间的最优和现在的最优
  bestChrom = Genetic.compareChrom(nowBestChrom, bestChrom)
  #寻找与替换最劣
  worseChrom = Genetic.findWorse(pop)
  pop[worseChrom[0]].chrom = pop[bestChrom[0]].chrom.copy()
  pop[worseChrom[0]].fitness = pop[bestChrom[0]].fitness
  #存储最优与平均
  bestFitnessList.append(bestChrom[1])
  aveFitnessList.append(Genetic.calAveFitness(pop, N))

最后再做一下迭代的的图像

plt.figure(1)
plt.plot(x, aveFitnessList)
plt.plot(x, bestFitnessList)
plt.show()

最后再在最前面加上各种库和文件就可以运行了。

import Genetic
import Fitness
import matplotlib.pyplot as plt
import numpy as np

感悟

可以说最主要的感悟就是染色体这一个类。其实那个Genetic.py与Fitness.py这两个文件也可以直接包装成类,但是这样一来我就嫌主文件太臃肿,在其他里面再包装成类又多此一举,毕竟这只是一个小程序,所以我就这样写了。

深刻感悟到了面向对象编程的优点,在编程逻辑的处理上真是一种享受,只需要思考对象的属性即可,省去了许多复杂的思考。

另一个感悟就是创建多个对象时,利用字典的方法来创建对象。当初我也是困惑怎么建立一个类似于C++中的对象数组,上网查找了各种方法,结果都避而不谈(当然,也可能是我搜索能力太差没找到),所以经过尝试中遇到到了这种方法。

等有空我再详细说一下这个方法吧,这一次就先到这里。

剩余的函数补充

首先是Genetic.py里面的八个函数

import random

#寻找最优染色体
def findBest(pop):
  best = ['1', 0.0000001]
  for i in pop:
    if best[1] < pop[i].fitness:
      best = [i, pop[i].fitness]
  return best

#寻找最劣染色体
def findWorse(pop):
  worse = ['1', 999999]
  for i in pop:
    if worse[1] > pop[i].fitness:
      worse = [i, pop[i].fitness]
  return worse

#赋初始值
def initialize(pop, chromNodes, chromRange):
  for i in pop:
    chromList = []
    for j in range(chromNodes):
      chromList.append(random.uniform(chromRange[j][0], chromRange[j][1]+1))
    pop[i].chrom = chromList.copy()
  return pop

#计算平均适应度
def calAveFitness(pop, N):
  sumFitness = 0
  for i in pop:
    sumFitness = sumFitness + pop[i].fitness
  aveFitness = sumFitness / N
  return aveFitness

#进行突变
def mutChrom(pop, mut, chromNodes, bestChrom, chromRange):
  for i in pop:
    #如果随机数小于变异概率(即可以变异)
    if mut > random.random():
      mutNode = random.randrange(0,chromNodes)
      mutRange = random.random() * (1-pop[i].fitness/bestChrom[1])**2
      pop[i].chrom[mutNode] = pop[i].chrom[mutNode] * (1+mutRange)
      #判断变异后的范围是否在要求范围内
      pop[i].chrom[mutNode] = inRange(pop[i].chrom[mutNode], chromRange[mutNode])
  return pop

#检验便宜范围是否在要求范围内
def inRange(mutNode, chromRange):
  if chromRange[0] < mutNode < chromRange[1]:
    return mutNode
  elif mutNode-chromRange[0] > mutNode-chromRange[1]:
    return chromRange[1]
  else:
    return chromRange[0]

#进行交叉
def acrChrom(pop, acr, chromNodes):
  for i in pop:
    for j in pop:
      if acr > random.random():
        acrNode = random.randrange(0, chromNodes)
        #两个染色体节点进行交换
        pop[i].chrom[acrNode], pop[j].chrom[acrNode] = pop[j].chrom[acrNode], pop[i].chrom[acrNode]
  return pop

#进行比较
def compareChrom(nowbestChrom, bestChrom):
  if bestChrom[1] > nowbestChrom[1]:
    return bestChrom
  else:
    return nowbestChrom

然后是Fitness.py的两个函数

import math

def calFitness(pop):

  for i in pop:
    #计算每个染色体的适应度
    pop[i].fitness = funcFitness(pop[i].chrom)

  return pop

def funcFitness(chrom):
  #适应度函数
  fitness = math.sin(chrom[0])+math.cos(chrom[1])+0.1*(chrom[0]+chrom[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 数据挖掘之Apriori算法详解和Python实现代码分享

    关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系,最早是为了发现超市交易数据库中不同的商品之间的关系.(啤酒与尿布) 基本概念 1.支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数.例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%. 2.自信度的定义:confidence(X-->

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • python使用rsa加密算法模块模拟新浪微博登录

    PC登录新浪微博时,在客户端用js预先对用户名.密码都进行了加密,而且在POST之前会GET一组参数,这也将作为POST_DATA的一部分.这样,就不能用通常的那种简单方法来模拟POST登录(比如人人网). 通过爬虫获取新浪微博数据,模拟登录是必不可少的. 1.在提交POST请求之前,需要GET获取四个参数(servertime,nonce,pubkey和rsakv),不是之前提到的只是获取简单的servertime,nonce,这里主要是由于js对用户名.密码加密方式改变了. 1.1 由于加密

  • python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. 今天只有短的RSA钥匙才可能被强力方式解破.到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式.只要其密钥的长度足够长,用RSA加密的信息实际上是不能被解破的.但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战. RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

  • 遗传算法之Python实现代码

    写在前面 之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了.这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了. Python的遗传算法主函数 我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness.因此我们就可以通过直接建立对象来作为种群中的个体. #染色体的类 class Chrom: chrom = [] fitness = 0 def showCh

  • python快速排序代码实例

    一. 算法描述: 1.先从数列中取出一个数作为基准数.2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边.3.再对左右区间重复第二步,直到各区间只有一个数.  二.python快速排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def sub_sort(array,low,high):    key = array[low]    while low < high:        while low <

  • python 统计代码行数简单实例

     python 统计代码行数简单实例 送测的时候,发现需要统计代码行数 于是写了个小程序统计自己的代码的行数. #calclate_code_lines.py import os def afileline(f_path): res = 0 f = open(f_path) for lines in f: if lines.split(): res += 1 return res if __name__=='__main__': host = 'E:'+os.sep+'develop'+os.s

  • K-近邻算法的python实现代码分享

    k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中. k-近邻算法分析 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型 k-

  • 单链表反转python实现代码示例

    单链表的反转可以使用循环,也可以使用递归的方式 1.循环反转单链表 循环的方法中,使用pre指向前一个结点,cur指向当前结点,每次把cur->next指向pre即可. 代码: class ListNode: def __init__(self,x): self.val=x; self.next=None; def nonrecurse(head): #循环的方法反转链表 if head is None or head.next is None: return head; pre=None; c

  • python获取代码运行时间的实例代码

    有的时候,操作大文件,或者取数,要很久,我们给脚本首尾添加一段代码就知道,这段代码整体的大致运行时间了. import time start =time.clock() #中间写上代码块 end = time.clock() print('Running time: %s Seconds'%(end-start)) 运行结果会是这样: In [2]: %run F:\\celueji\\python_script\\sheetcopy_RuleRepor.py ...: Running time

  • 用python统计代码行的示例(包括空行和注释)

    实例如下所示: import os import string path = "/Users/U/workspace/python learning/show-me-the-code/0007/test/" dir = os.listdir(path) def count(file): total = 0 #总行数 countPound = 0 #注释行数 countBlank = 0 #空行数 line = open(file,'r',encoding='utf-8') #打开文件,

  • python实现代码统计程序

    本文实例为大家分享了python实现代码统计程序的具体代码,供大家参考,具体内容如下 # encoding="utf-8" """ 统计代码行数 """ import sys import os def count_file_line(path): """统计文件的有效行数""" countLine = 0 # 设置一个标志位,当遇到以""&quo

  • Python实现代码统计工具

    本文实例为大家分享了Python实现代码统计工具的具体代码,供大家参考,具体内容如下 思路:首先获取所有文件,然后统计每个文件中代码的行数,最后将行数相加. 实现的功能: 统计每个文件的行数: 统计总行数: 支持指定统计文件类型,排除不想统计的文件类型: 排除空行: 排除注释行 import os import sys import os.path #for i in sys.argv: # print (i) # 判断单个文件的代码行数 def count_file_lines(file_pa

随机推荐