Python的Django框架中的select_related函数对QuerySet 查询的优化

1. 实例的背景说明

假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

Models.py 内容如下:

from django.db import models

class Province(models.Model):
  name = models.CharField(max_length=10)
  def __unicode__(self):
    return self.name

class City(models.Model):
  name = models.CharField(max_length=5)
  province = models.ForeignKey(Province)
  def __unicode__(self):
    return self.name

class Person(models.Model):
  firstname = models.CharField(max_length=10)
  lastname  = models.CharField(max_length=10)
  visitation = models.ManyToManyField(City, related_name = "visitor")
  hometown  = models.ForeignKey(City, related_name = "birth")
  living   = models.ForeignKey(City, related_name = "citizen")
  def __unicode__(self):
    return self.firstname + self.lastname

注1:创建的app名为“QSOptimize”

注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
2. select_related()

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法

在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:

>>> citys = City.objects.all()
>>> for c in citys:
...  print c.province
...

这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;

注:这里的SQL语句是直接从Django的logger:‘django.db.backends'输出出来的

如果我们使用select_related()函数:

>>> citys = City.objects.select_related().all()
>>> for c in citys:
...  print c.province
...

就只有一次SQL查询,显然大大减少了SQL查询的次数:

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;

这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:

+----+-----------+-------------+----+-----------+
| id | name   | province_id | id | name   |
+----+-----------+-------------+----+-----------+
| 1 | 武汉市  |      1 | 1 | 湖北省  |
| 2 | 广州市  |      2 | 2 | 广东省  |
| 3 | 十堰市  |      1 | 1 | 湖北省  |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec)

使用方法
函数支持如下三种用法:
*fields 参数

select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。

例如我们要获得张三的现居省份,可以用如下方式:

>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province

触发的SQL查询如下:

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' );

可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。

+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name   | province_id | id | name   |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| 1 | 张    | 三    |      3 |     1 | 1 | 武汉市  |  1     | 1 | 湖北省  |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec)

然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:

>>> zhangs.hometown.province

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ;

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1

同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。

值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:

>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:

>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province

如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数

select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:

>>> zhangs = Person.objects.select_related(depth = d)

d=1  相当于 select_related(‘hometown','living')

d=2  相当于 select_related(‘hometown__province','living__province')
无参数

select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:

Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
    Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。

小结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  4. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  5. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  6. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
(0)

相关推荐

  • python查询mysql中文乱码问题

    问题: python2.7 查询或者插入中文数据在mysql中的时候出现中文乱码 --- 可能情况: 1.mysql数据库各项没有设置编码,默认为'latin' 2.使用MySQL.connect的时候没有设置默认编码 3.没有设置python的编码,python2.7默认为'ascii' 4.没有解码 --- 解决方法: 1.设置mysql的编码 ubuntu执行下列语句: ** sudo vim /etc/mysql/my.cnf ** 然后在里面插入语句: [client] default

  • python中MySQLdb模块用法实例

    本文实例讲述了python中MySQLdb模块用法.分享给大家供大家参考.具体用法分析如下: MySQLdb其实有点像php或asp中连接数据库的一个模式了,只是MySQLdb是针对mysql连接了接口,我们可以在python中连接MySQLdb来实现数据的各种操作. python连接mysql的方案有oursql.PyMySQL. myconnpy.MySQL Connector 等,不过本篇要说的确是另外一个类库MySQLdb,MySQLdb 是用于Python链接Mysql数据库的接口,它

  • Django1.7+python 2.78+pycharm配置mysql数据库教程

    配置好virtualenv 和virtualenvwrapper后,使用pycharm创建新项目.之后要面临的问题就来了,之前一直使用的是sqlite作为开发数据库进行学习,按照之前看教程的原则,好像就是说开发环境要和生产环境尽量的一致,所以现在想尝试一下使用更有可能在生产环境部署的mysql数据库进行开发. 本觉得是一件应该很轻松的事情,没想到遇到了一些麻烦 根据一通百度,搜出来的方案大概有: MySQLdb mysql安装时候自带的connector pymysql MySQLdb 是dja

  • Python的Django框架中的select_related函数对QuerySet 查询的优化

    1. 实例的背景说明 假定一个个人信息系统,需要记录系统中各个人的故乡.居住地.以及到过的城市.数据库设计如下: Models.py 内容如下: from django.db import models class Province(models.Model): name = models.CharField(max_length=10) def __unicode__(self): return self.name class City(models.Model): name = models

  • 在Python的Django框架中编写编译函数

    当遇到一个模板标签(template tag)时,模板解析器就会把标签包含的内容,以及模板解析器自己作为参数调用一个python函数. 这个函数负责返回一个和当前模板标签内容相对应的节点(Node)的实例. 例如,写一个显示当前日期的模板标签:{% current_time %}.该标签会根据参数指定的 strftime 格式(参见:http://www.djangoproject.com/r/python/strftime/)显示当前时间.首先确定标签的语法是个好主意. 在这个例子里,标签应该

  • 在Python的Django框架中包装视图函数

    我们最终的视图技巧利用了一个高级python技术. 假设你发现自己在各个不同视图里重复了大量代码,就像 这个例子: def my_view1(request): if not request.user.is_authenticated(): return HttpResponseRedirect('/accounts/login/') # ... return render_to_response('template1.html') def my_view2(request): if not r

  • 在Python的Django框架中加载模版的方法

    为了减少模板加载调用过程及模板本身的冗余代码,Django 提供了一种使用方便且功能强大的 API ,用于从磁盘中加载模板, 要使用此模板加载API,首先你必须将模板的保存位置告诉框架. 设置的保存文件就是settings.py. 如果你是一步步跟随我们学习过来的,马上打开你的settings.py配置文件,找到TEMPLATE_DIRS这项设置吧. 它的默认设置是一个空元组(tuple),加上一些自动生成的注释. TEMPLATE_DIRS = ( # Put strings here, li

  • Python的Django框架中的Context使用

    一旦你创建一个 Template 对象,你可以用 context 来传递数据给它. 一个context是一系列变量和它们值的集合. context在Django里表现为 Context 类,在 django.template 模块里. 她的构造函数带有一个可选的参数: 一个字典映射变量和它们的值. 调用 Template 对象 的 render() 方法并传递context来填充模板: >>> from django.template import Context, Template &

  • 详解Python的Django框架中manage命令的使用与扩展

    [简介] django-admin.py是Django的一个用于管理任务的命令行工具.本文将描述它的大概用法. 另外,在每一个Django project中都会有一个manage.py.manage.py是对django-admin.py的简单包装,它额外帮助我们做了两件事情: 它将你的project的包放到sys.path中 它将DJANGO_SETTINGS_MODULE环境变量设置为了你的project的setting.py文件的位置. 如果你是通过setup.py工具来安装Django的

  • 详解Python的Django框架中的中间件

    什么是中间件 我们从一个简单的例子开始. 高流量的站点通常需要将Django部署在负载平衡proxy之后. 这种方式将带来一些复杂性,其一就是每个request中的远程IP地址(request.META["REMOTE_IP"])将指向该负载平衡proxy,而不是发起这个request的实际IP. 负载平衡proxy处理这个问题的方法在特殊的 X-Forwarded-For 中设置实际发起请求的IP. 因此,需要一个小小的中间件来确保运行在proxy之后的站点也能够在 request.

  • 在Python的Django框架中创建和使用模版

    如何使用模板系统 让我们深入研究模板系统,你将会明白它是如何工作的.但我们暂不打算将它与先前创建的视图结合在一起,因为我们现在的目的是了解它是如何独立工作的. . (换言之, 通常你会将模板和视图一起使用,但是我们只是想突出模板系统是一个Python库,你可以在任何地方使用它,而不仅仅是在Django视图中.) 在Python代码中使用Django模板的最基本方式如下: 可以用原始的模板代码字符串创建一个 Template 对象, Django同样支持用指定模板文件路径的方式来创建 Templa

  • 全面剖析Python的Django框架中的项目部署技巧第1/2页

    项目开始时是一个关键时刻,选择会对项目产生长期的影响.有很多关于如何开始使用Django框架的教程,但很少讨论如何专业地使用Django,或如何使用行业公认的最佳做法来确保你的项目规模的持续增长.事前的筹划让你(和所有同事的生活)在走向将来时更容易. 文章结束时,你将有 一个全功能的Django 1.6项目 源代码受控的所有资源(使用Git或Mercurial) 自动回归和单元测试(使用unittest库) 一个独立于特定环境的安装项目(使用virtualenv) 自动化的部署和测试(使用Fab

  • Python的Django框架中if标签的相关使用

    {% if %} 标签检查(evaluate)一个变量,如果这个变量为真(即,变量存在,非空,不是布尔值假),系统会显示在 {% if %} 和 {% endif %} 之间的任何内容,例如: {% if today_is_weekend %} <p>Welcome to the weekend!</p> {% endif %} {% else %} 标签是可选的: {% if today_is_weekend %} <p>Welcome to the weekend!

随机推荐