ETL方法与过程讲解

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。 ETL是BI项目重要的一个环节。 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败。

ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehousing,数据仓库)中去。

ETL的实现有多种方法,常用的有三种。一种是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服务、Informatic等)实现,一种是SQL方式实现,另外一种是ETL工具和SQL相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

一、 数据的抽取(Extract)

这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么DBMS,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

1、对于与存放DW的数据库系统相同的数据源处理方法

这一类数据源在设计上比较容易。一般情况下,DBMS(SQLServer、Oracle)都会提供数据库链接功能,在DW数据库服务器和原业务系统之间建立直接的链接关系就可以写Select 语句直接访问。

2、对于与DW数据库系统不同的数据源的处理方法

对于这一类数据源,一般情况下也可以通过ODBC的方式建立数据库链接——如SQL Server和Oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将源数据导出成.txt或者是.xls文件,然后再将这些源系统文件导入到ODS中。另外一种方法是通过程序接口来完成。

3、对于文件类型数据源(.txt,.xls)

可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库中抽取。或者还可以借助工具实现。

4、增量更新的问题

对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间,我们可以用来做增量的标志,每次抽取之前首先判断ODS中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。

二、数据的清洗转换(Cleaning、Transform)

一般情况下,数据仓库分为ODS、DW两部分。通常的做法是从业务系统到ODS做清洗,将脏数据和不完整数据过滤掉,在从ODS到DW的过程中转换,进行一些业务规则的计算和聚合。

1、 数据清洗

数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。

不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。

(1)不完整的数据:这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。

(2)错误的数据:这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

(3)重复的数据:对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

2、 数据转换

数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

(1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一,比如同一个供应商在结算系统的编码是XX0001,而在CRM中编码是YY0001,这样在抽取过来之后统一转换成一个编码。

(2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

(3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在ETL中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

三、ETL日志、警告发送

1、 ETL日志

ETL日志分为三类。

一类是执行过程日志,这一部分日志是在ETL执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。

一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。

第三类日志是总体日志,只记录ETL开始时间、结束时间是否成功信息。如果使用ETL工具,ETL工具会自动产生一些日志,这一类日志也可以作为ETL日志的一部分。

记录日志的目的是随时可以知道ETL运行情况,如果出错了,可以知道哪里出错。

2、 警告发送

如果ETL出错了,不仅要形成ETL出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

ETL是BI项目的关键部分,也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为BI项目后期开发提供准确与高效的数据。

后记

做数据仓库系统,ETL是关键的一环。说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具。回忆一下工作这么长时间以来,处理数据迁移、转换的工作倒还真的不少。但是那些工作基本上是一次性工作或者很小数据量。可是在数据仓库系统中,ETL上升到了一定的理论高度,和原来小打小闹的工具使用不同了。究竟什么不同,从名字上就可以看到,人家已经将倒数据的过程分成3个步骤,E、T、L分别代表抽取、转换和装载。

其实ETL过程就是数据流动的过程,从不同的数据源流向不同的目标数据。但在数据仓库中,

ETL有几个特点,

一是数据同步,它不是一次性倒完数据就拉到,它是经常性的活动,按照固定周期运行的,甚至现在还有人提出了实时ETL的概念。

二是数据量,一般都是巨大的,值得你将数据流动的过程拆分成E、T和L。

现在有很多成熟的工具提供ETL功能,且不说他们的好坏。从应用角度来说,ETL的过程其实不是非常复杂,这些工具给数据仓库工程带来和很大的便利性,特别是开发的便利和维护的便利。但另一方面,开发人员容易迷失在这些工具中。举个例子,VB是一种非常简单的语言并且也是非常易用的编程工具,上手特别快,但是真正VB的高手有多少?微软设计的产品通常有个原则是“将使用者当作傻瓜”,在这个原则下,微软的东西确实非常好用,但是对于开发者,如果你自己也将自己当作傻瓜,那就真的傻了。ETL工具也是一样,这些工具为我们提供图形化界面,让我们将主要的精力放在规则上,以期提高开发效率。从使用效果来说,确实使用这些工具能够非常快速地构建一个job来处理某个数据,不过从整体来看,并不见得他的整体效率会高多少。问题主要不是出在工具上,而是在设计、开发人员上。他们迷失在工具中,没有去探求ETL的本质。可以说这些工具应用了这么长时间,在这么多项目、环境中应用,它必然有它成功之处,它必定体现了ETL的本质。如果我们不透过表面这些工具的简单使用去看它背后蕴涵的思想,最终我们作出来的东西也就是一个个独立的job,将他们整合起来仍然有巨大的工作量。大家都知道“理论与实践相结合”,如果在一个领域有所超越,必须要在理论水平上达到一定的高度.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 数据库工具sysbench安装教程和性能测试例子

    sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况.关于这个项目的详细介绍请看:http://sysbench.sourceforge.net. 它主要包括以下几种方式的测试: 1.cpu性能 2.磁盘io性能 3.调度程序性能 4.内存分配及传输速度 5.POSIX线程性能 6.数据库性能(OLTP基准测试) 目前sysbench主要支持 MySQL,pgsql,oracle 这3种数据库. 一.安装 首先,在 http://sour

  • ETL方法与过程讲解

    ETL是将业务系统的数据经过抽取.清洗转换之后加载到数据仓库的过程,目的是将企业中的分散.零乱.标准不统一的数据整合到一起,为企业的决策提供分析依据. ETL是BI项目重要的一个环节. 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败. ETL的设计分三部分:数据抽取.数据的清洗转换.数据的加载.在设计ETL的时候我们也是从这三部分出发.数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)

  • React工作流程及Error Boundaries实现过程讲解

    目录 什么是Error Boundaries 步骤1:捕获错误 步骤2:构造callback 执行callback 总结 这里简单讲解下React工作流程,后文有用.分为三步: 触发更新 render阶段:计算更新会造成的副作用 commit阶段:在宿主环境执行副作用 副作用有很多,比如: 插入DOM节点 执行useEffect回调 好了,让我们进入主题. 什么是Error Boundaries React提供了两个与错误处理相关的API: getDerivedStateFromError:静态

  • SpringBoot整合JPA框架实现过程讲解

    目录 一. Spring Boot数据访问概述 二. Spring Data JPA简介 2.1 编写ORM实体类 2.2 编写Repository接口 2.2.1 继承XXRepository<T, ID>接口 2.2.2 操作数据的多种方式 2.2.3 @Transactional事务管理 2.2.4 @Moditying注解 2.3.5 复杂条件查询 三. 使用Spring Boot整合JPA 3.1 添加Spring Data JPA依赖启动器 3.2 编写ORM实体类 3.3 编写R

  • Flink自定义Sink端实现过程讲解

    目录 Sink介绍 UML关系 Flink addSink 案例 Sink介绍 在Fink官网中sink端只是给出了常规的write api.在我们实际开发场景中需要将flink处理的数据写入kafka,hbase kudu等外部系统. UML关系 自定义Sink需要实现父类的接口和继承抽象类. 上面是Sink的继承关系 Flink addSink // 方法需要SinkFunction的对象 public DataStreamSink<T> addSink(SinkFunction<T

  • SpringCloud Gateway动态转发后端服务实现过程讲解

    目录 前言 一.概述 二.项目中加入依赖 三.配置文件 四.动态路由数据存储格式 五.后端服务动态转发 六.单元测试 前言 API网关的核心功能是统一流量入口,实现路由转发,SpringCloudGateway是API网关开发的技术之一,此外比较流行的还有Kong和ApiSix,这2个都是基于OpenResty技术栈. 简单的路由转发可以通过SpringCloudGateway的配置文件实现,在一些业务场景种,会需要动态替换路由配置中的后端服务地址,单纯靠配置文件无法满足这种需求. 本文介绍一种

  • Android自定义View绘制的方法及过程(二)

    上一篇<Android 自定义View(一) Paint.Rect.Canvas介绍>讲了最基础的如何自定义一个View,以及View用到的一些工具类.下面讲下View绘制的方法及过程 public class MyView extends View { private String TAG = "--------MyView"; private int width, height; public MyView(Context context, AttributeSet a

  • java接口私有方法实现过程解析

    这篇文章主要介绍了java接口私有方法实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 问题描述: 我们需要抽取一个共有方法,用来解决两个默认方法之间重复代码的问题 但是这个共有方法不应该让实现类使用,应该是私有化的. 解决方案: 从java 9开始,接口当中允许定义私有方法. 1.普通私有方法,解决多个默认方法之间重复代码问题 格式: private 返回值类型方法名称(参数列表){ 方法体 } 2.静态私有方法,解决多个静态方法之

  • python 通过字符串调用对象属性或方法的实例讲解

    有时候需要将属性或方法作为参数传入,这个时候可以通过以下几种方式用字符串调用对象属性或方法 1.eval In [634]: def getmethod(x,char='just for test'): ...: return eval('str.%s' % x)(char) ...: In [635]: getmethod('upper') Out[635]: 'JUST FOR TEST' 2.getattr In [650]: def getmethod2(x, char='just fo

  • String split方法实现过程图解

    这篇文章主要介绍了String split方法实现过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 String的split方法相信大家都不陌生,或多或少都用过它将字符串转成一个数组,但是就是这样一个简单的方法,里面也有一个不得不注意.不深不浅的小坑. 本地测试代码如下图所示: 图1 大家会发现split1跟split3的长度符合我们的预期,但是split2应该是长度为5,但实际长度却仍然为4.相信大家在遇到这种情况的时候, 应该能立马猜

  • python中lower函数实现方法及用法讲解

    之前小编介绍过python中将字符串小写字符转为大写的upper函数的使用方法(upper函数).有将小写转为大写的需要,那也有将大写转为小写的情况.本文主要介绍在python中可以将字符串大写自摸转换为小写字母的lower函数. 1.lower() 转换字符串中所有大写字符为小写 2.语法 str.lower() -> str 3.返回值 返回将字符串中的所有大写字母转换为小写字母的字符串 4.使用实例 #!/usr/bin/python3 str = "ABCDEFG" pr

随机推荐