pandas 选择某几列的方法

如下所示:

col_n = ['名称','收盘价','日期']

a = pd.DataFrame(df,columns = col_n)

以上这篇pandas 选择某几列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • 根据DataFrame某一列的值来选择具体的某一行方法

    原始数据的DF: 此时,我要选择列名isInfected为"手足口病"的样本行: 总结:选择DataFrame里面某一列等于某个值的所有行,用一条命令即可解决即: df.loc[df['columnName']=='the value'] 以上这篇根据DataFrame某一列的值来选择具体的某一行方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 对Python中DataFrame选择某列值为XX的行实例详解

    如下所示: #-*-coding:utf8-*- import pandas as pd all_data=pd.read_csv("E:/协和问答系统/SenLiu/熵测试数据.csv") #获取某一列值为xx的行的候选列数据 print(all_data) feature_data=all_data.iloc[:,[0,-1]][all_data[all_data.T.index[0]]=='青年'] print(feature_data) 实验结果如下: "C:\Pro

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • 对pandas将dataframe中某列按照条件赋值的实例讲解

    在数据处理过程中,经常会出现对某列批量做某些操作,比如dataframe df要对列名为"values"做大于等于30设置为1,小于30设置为0操作,可以这样使用dataframe的apply函数来实现, 具体实现代码如下: def fun(x): if x >= 30: return 1 else: return 0 values= feature['values'].apply(lambda x: fun(x)) 具体的逻辑可以修改fun函数来实现,但是按照某些条件选择列不是

  • pandas系列之DataFrame 行列数据筛选实例

    一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,

  • python pandas dataframe 行列选择,切片操作方法

    SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i

  • pandas Dataframe行列读取的实例

    如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as pd from pandas import Series,DataFrame data = {'a':[1,2,3], 'c':[4,5,6], 'b':[7,8,9] } frame = DataFrame(data,index=['one','two','three']) print(frame) print(fra

  • pandas.DataFrame删除/选取含有特定数值的行或列实例

    1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].

  • pandas 选择某几列的方法

    如下所示: col_n = ['名称','收盘价','日期'] a = pd.DataFrame(df,columns = col_n) 以上这篇pandas 选择某几列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • pandas选择或添加列生成新的DataFrame操作示例

    目录 如何向 pandas.DataFrame 添加新的列或行 选择某些列 选择某些列和行 添加新的列 更改某一列的值 补全缺失值 如何向 pandas.DataFrame 添加新的列或行 通过指定新的列名/行名来添加,或者用pandas.DataFrame的assign().insert().append()方法添加等方法. 这里,将描述以下内容. 将列添加到 pandas.DataFrame 通过指定新列名添加 用assign()方法添加/分配 用insert()方法添加到任意位置 使用 c

  • 用pandas中的DataFrame时选取行或列的方法

    如下所示: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型 data.w #选择表格

  • 在Pandas DataFrame中插入一列的方法实例

    目录 引言 示例1:插入新列作为第一列 示例2:插入新列作为中间列 示例3:插入新列作为最后一列 补充:按条件选择分组分别赋值 总结 引言 通常,您可能希望在 Pandas DataFrame 中插入一个新列.幸运的是,使用 pandas insert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: loc: 插入列的索引.第一列是 0. column: 赋予新列的名称. value:

  • pandas中的DataFrame按指定顺序输出所有列的方法

    问题: 输出新建的DataFrame对象时,DataFrame中各列的显示顺序和DataFrame定义中的顺序不一致. 例如: import pandas as pd grades = [48,99,75,80,42,80,72,68,36,78] df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)], 'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],

  • pandas按若干个列的组合条件筛选数据的方法

    还是用图说话 A文件: 比如,我想筛选出"设计井别"."投产井别"."目前井别"三列数据都为11的数据,结果如下: 当然,这里的筛选条件可以根据用户需要自由调整,代码如下: # -*- coding: utf-8 -*- """ Created on Wed Nov 29 10:46:31 2017 @author: wq """ import pandas as pd #input.c

  • pandas将DataFrame的列变成行索引的方法

    pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b","c"],columns=["A","B","C"])

  • pandas 对每一列数据进行标准化的方法

    两种方式 >>> import numpy as np >>> import pandas as pd Backend TkAgg is interactive backend. Turning interactive mode on. >>> np.random.seed(1) >>> df_test = pd.DataFrame(np.random.randn(4,4)* 4 + 3) >>> df_test 0

  • pandas DataFrame实现几列数据合并成为新的一列方法

    问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country.province.city.county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方法: parent_teacher_data['address'] = parent_teacher_data['country']+parent_teacher_data['province']+parent_teacher_data['city']+parent_teacher_data['county'] 就

随机推荐