深入分析JAVA Vector和Stack的具体用法

前面我们已经接触过几种数据结构了,有数组、链表、Hash表、红黑树(二叉查询树),今天再来看另外一种数据结构:栈。

什么是栈呢,我们先看一个例子:栈就相当于一个很窄的木桶,我们往木桶里放东西,往外拿东西时会发现,我们最开始放的东西在最底部,最先拿出来的是刚刚放进去的。所以,栈就是这么一种先进后出(FirstInLastOut,或者叫后进先出)的容器,它只有一个口,在这个口放入元素,也在这个口取出元素。那么我们接下来学习JDK中的栈。

一、Vector&Stack的基本介绍和使用

我们先看下JDK种的定义:

public class Stack<E> extends Vector<E> {

从上面可以看到Stack 是继承自于Vector的,因此我们要对Vector 也要有一定的认识。

Vector:线程安全的动态数组

Stack:继承Vector,基于动态数组实现的一个线程安全的栈;

1.Vector 和 Stack的特点:

Vector与ArrayList基本是一致的,不同的是Vector是线程安全的,会在可能出现线程安全的方法前面加上synchronized关键字;

Vector:随机访问速度快,插入和移除性能较差(数组的特点);支持null元素;有顺序;元素可以重复;线程安全;

Stack:后进先出,实现了一些栈基本操作的方法(其实并不是只能后进先出,因为继承自Vector,可以有很多操作,从某种意义上来讲,不是一个栈);

2.Vector 和 Stack 结构:

Vector类

与ArrayList基本一致,剩下的主要不同点如下:

1、Vector是线程安全的

2、ArrayList增长量和Vector的增长量不一致

其它,如构造方法不一致,Vector可以通过构造方法初始化capacityIncrement,另外还有其它一些方法,如indexOf方法,Vector支持从指定位置开始搜索查找;另外,Vector还有一些功能重复的冗余方法,如addElement,setElementAt方法,之所以这样,是由于历史原因,像addElement方法是以前遗留的,当集合框架引进的时候,Vector加入集合大家族,改成实现List接口,需要实现List接口中定义的一些方法,但是出于兼容考虑,又不能删除老的方法,所以出现了一些功能冗余的旧方法;现在已经被ArrayList取代,基本很少使用,了解即可。

Stack类

实现了栈的基本操作。方法如下:

public Stack();

创建空栈

public synchronized E peek();

返回栈顶的值;

public E push(E item);

入栈操作;

public synchronized E pop();

出栈操作;

public boolean empty();

判断栈是否为空;

public synchronized int search(Object o);

返回对象在栈中的位置;

对于上述的栈而言,我们基本只会经常用到上面的方法,虽然它继承了Vector,有很多方法,但基本不会使用,而只是当做一个栈来看待。

3.基本使用

Vector中的部分方法使用如下,另外Vector的遍历方式跟ArrayList一致,可以用foreach,迭代器,for循环遍历;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.Vector;
public class Test {
  public static void main(String[] args) {
    Vector<Integer> vector = new Vector<Integer>();
    for(int i = 0; i < 10; i++){
      vector.add(i);
    }
     //直接打印
    System.out.println(vector.toString());
    //size()
    System.out.println(vector.size());
    //contains
    System.out.println(vector.contains(2));
    //iterator
    Iterator<Integer> iterator = vector.iterator();
    while(iterator.hasNext()){
      System.out.print(iterator.next() + " ");
    }
    //toArray
    Object[] objArr = vector.toArray();
    System.out.println("\nobjArr:" + Arrays.asList(objArr));
    Integer[] intArr = vector.toArray(new Integer[vector.size()]);
    System.out.println("intArr:" + Arrays.asList(intArr));
    //add
    vector.add(5);
    //remove
    vector.remove(5);
    System.out.println(vector);
    //containsAll
    System.out.println(vector.containsAll(Arrays.asList(5,6)));
    //addAll
    vector.addAll(Arrays.asList(555,666));
    System.out.println(vector);
     //removeAll
    vector.removeAll(Arrays.asList(555,666));
    System.out.println(vector);
    //addAll方法
    vector.addAll(5, Arrays.asList(666,666, 6));
    System.out.println(vector);
    //get方法
    System.out.println(vector.get(5));
    //set方法
    vector.set(5, 55);
    System.out.println(vector.get(5));
    //add方法
    vector.add(0, 555);
    System.out.println(vector);
    //remove方法
    vector.remove(0);
    System.out.println(vector);
    //indexof方法
    System.out.println(vector.indexOf(6));
    //lastIndexOf方法
    System.out.println(vector.lastIndexOf(6));
    //listIterator方法
    ListIterator<Integer> listIterator = vector.listIterator();
    System.out.println(listIterator.hasPrevious());
    //listIterator(index)方法
    ListIterator<Integer> iListIterator = vector.listIterator(5);
    System.out.println(iListIterator.previous());
    //subList方法
    System.out.println(vector.subList(5, 7));
    //clear
    vector.clear();
    System.out.println(vector);

  }
}

Stack中的部分方法使用如下,因为Stack继承Vector,所以Vector可以用的方法,Stack同样可以使用,以下列出一些Stack独有的方法的例子,很简单,就是栈的一些基本操作,另外stack除了Vector的几种遍历方式外,还有自己独有的遍历元素的方式(利用empty方法和pop方法实现栈顶到栈底的遍历):

import java.util.Stack;
public class Test {
  public static void main(String[] args) {
    Stack<Integer> stack = new Stack<Integer>();
    for(int i = 0; i < 10; i++){
      stack.add(i);
    }
    System.out.println(stack);
    System.out.println(stack.peek());
    stack.push(555);
    System.out.println(stack);
    System.out.println(stack.pop());
    System.out.println(stack);
    System.out.println(stack.empty());
    System.out.println(stack.search(6));
    System.out.println("stack遍历:");
    while(!stack.empty()){
      System.out.print(stack.pop() + " ");
    }
  }
}

小节:

Vector是线程安全的,但是性能较差,一般情况下使用ArrayList,除非特殊需求;

如果打算用Stack作为栈来使用的话,就老老实实严格按照栈的几种操作来使用,否则就是去了使用stack的意义,还不如用Vector;

二、Vector&Stacke的结构和底层存储

public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable

Vector是List的一个实现类,其实Vector也是一个基于数组实现的List容器,其功能及实现代码和ArrayList基本上是一样的。那么不一样的是什么地方的,一个是数组扩容的时候,Vector是*2,ArrayList是*1.5+1;另一个就是Vector是线程安全的,而ArrayList不是,而Vector线程安全的做法是在每个方法上面加了一个synchronized关键字来保证的。但是这里说一句,Vector已经不官方的(大家公认的)不被推荐使用了,正式因为其实现线程安全方式是锁定整个方法,导致的是效率不高,那么有没有更好的提到方案呢,其实也不能说有,但是还真就有那么一个,Collections.synchronizedList()

由于Stack是继承和基于Vector,那么简单看一下Vector的一些定义和方法源码:

// 底层使用数组存储数据
  protected Object[] elementData;
  // 元素个数
  protected int elementCount ;
  // 自定义容器扩容递增大小
  protected int capacityIncrement ;

  public Vector( int initialCapacity, int capacityIncrement) {
    super();
    // 越界检查
    if (initialCapacity < 0)
      throw new IllegalArgumentException( "Illegal Capacity: " +
                        initialCapacity);
    // 初始化数组
    this.elementData = new Object[initialCapacity];
    this.capacityIncrement = capacityIncrement;
  }

  // 使用synchronized关键字锁定方法,保证同一时间内只有一个线程可以操纵该方法
  public synchronized boolean add(E e) {
    modCount++;
    // 扩容检查
    ensureCapacityHelper( elementCount + 1);
    elementData[elementCount ++] = e;
    return true;
  }

  private void ensureCapacityHelper(int minCapacity) {
    // 当前元素数量
    int oldCapacity = elementData .length;
    // 是否需要扩容
    if (minCapacity > oldCapacity) {
      Object[] oldData = elementData;
      // 如果自定义了容器扩容递增大小,则按照capacityIncrement进行扩容,否则按两倍进行扩容(*2)
      int newCapacity = (capacityIncrement > 0) ?
       (oldCapacity + capacityIncrement) : (oldCapacity * 2);
      if (newCapacity < minCapacity) {
       newCapacity = minCapacity;
      }
      // 数组copy
      elementData = Arrays.copyOf( elementData, newCapacity);
    }
  }

Vector就简单看到这里,其他方法Stack如果没有调用的话就不进行分析了,不明白的可以去看ArrayList源码解析。

三、主要方法分析

1.peek()——获取栈顶的对象

/**
   * 获取栈顶的对象,但是不删除
   */
  public synchronized E peek() {
    // 当前容器元素个数
    int  len = size();

    // 如果没有元素,则直接抛出异常
    if (len == 0)
      throw new EmptyStackException();
    // 调用elementAt方法取出数组最后一个元素(最后一个元素在栈顶)
    return elementAt(len - 1);
  }

  /**
   * 根据index索引取出该位置的元素,这个方法在Vector中
   */
  public synchronized E elementAt(int index) {
    // 越界检查
    if (index >= elementCount ) {
      throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
    }
    // 直接通过数组下标获取元素
    return (E)elementData [index];
  }

2.pop()——弹栈(出栈),获取栈顶的对象,并将该对象从容器中删除

/**
   * 弹栈,获取并删除栈顶的对象
   */
  public synchronized E pop() {
    // 记录栈顶的对象
    E   obj;
    // 当前容器元素个数
    int  len = size();

    // 通过peek()方法获取栈顶对象
    obj = peek();
    // 调用removeElement方法删除栈顶对象
    removeElementAt(len - 1);

    // 返回栈顶对象
    return obj;
  }

  /**
   * 根据index索引删除元素
   */
  public synchronized void removeElementAt(int index) {
    modCount++;
    // 越界检查
    if (index >= elementCount ) {
      throw new ArrayIndexOutOfBoundsException(index + " >= " +
                       elementCount);
    }
    else if (index < 0) {
      throw new ArrayIndexOutOfBoundsException(index);
    }
    // 计算数组元素要移动的个数
    int j = elementCount - index - 1;
    if (j > 0) {
      // 进行数组移动,中间删除了一个,所以将后面的元素往前移动(这里直接移动将index位置元素覆盖掉,就相当于删除了)
      System. arraycopy(elementData, index + 1, elementData, index, j);
    }
    // 容器元素个数减1
    elementCount--;
    // 将容器最后一个元素置空(因为删除了一个元素,然后index后面的元素都向前移动了,所以最后一个就没用了 )
    elementData[elementCount ] = null; /* to let gc do its work */
  }

3.push(E item)——压栈(入栈),将对象添加进容器并返回

/**
   * 将对象添加进容器并返回
   */
  public E push(E item) {
    // 调用addElement将元素添加进容器
    addElement(item);
    // 返回该元素
    return item;
  }

  /**
   * 将元素添加进容器,这个方法在Vector中
   */
  public synchronized void addElement(E obj) {
    modCount++;
    // 扩容检查
    ensureCapacityHelper( elementCount + 1);
    // 将对象放入到数组中,元素个数+1
    elementData[elementCount ++] = obj;
  }

4.search(Object o)——返回对象在容器中的位置,栈顶为1

/**
   * 返回对象在容器中的位置,栈顶为1
   */
  public synchronized int search(Object o) {
    // 从数组中查找元素,从最后一次出现
    int i = lastIndexOf(o);

    // 因为栈顶算1,所以要用size()-i计算
    if (i >= 0) {
      return size() - i;
    }
    return -1;
  }

5.empty()——容器是否为空

/**
   * 检查容器是否为空
   */
  public boolean empty() {
    return size() == 0;
  }

小节:

到这里Stack的方法就分析完成了,由于Stack最终还是基于数组的,理解起来还是很容易的(因为有了ArrayList的基础啦)。

虽然jdk中Stack的源码分析完了,但是这里有必要讨论下,不知道是否发现这里的Stack很奇怪的现象,

(1)Stack为什么是基于数组实现的呢?

我们都知道数组的特点:方便根据下标查询(随机访问),但是内存固定,且扩容效率较低。很容易想到Stack用链表实现最合适的。

(2)Stack为什么是继承Vector的?

继承也就意味着Stack继承了Vector的方法,这使得Stack有点不伦不类的感觉,既是List又是Stack。如果非要继承Vector合理的做法应该是什么:Stack不继承Vector,而只是在自身有一个Vector的引用,聚合对不对?

唯一的解释呢,就是Stack是jdk1.0出来的,那个时候jdk中的容器还没有ArrayList、LinkedList等只有Vector,既然已经有了Vector且能实现Stack的功能,那么就干吧。。。既然用链表实现Stack是比较理想的,那么我们就来尝试一下吧:

import java.util.LinkedList;
public class LinkedStack<E> {
    private LinkedList<E> linked ;
     public LinkedStack() {
        this.linked = new LinkedList<E>();
    }
    public E push(E item) {
        this.linked .addFirst(item);
        return item;
    }
    public E pop() {
        if (this.linked.isEmpty()) {
           return null;
       }
        return this.linked.removeFirst();
    }
    public E peek() {
        if (this.linked.isEmpty()) {
           return null;
       }
        return this.linked.getFirst();
    }
    public int search(E item) {
        int i = this.linked.indexOf(item);
        return i + 1;
    }
     public boolean empty() {
        return this.linked.isEmpty();
    }
}

这里使用的LinkedList实现的Stack,记得在LinkedList中说过,LinkedList实现了Deque接口使得它既可以作为栈(先进后出),又可以作为队列(先进先出)。

四、Vector&ArrayList的区别

List接口一共有三个实现类,分别是ArrayList、Vector和LinkedList。List用于存放多个元素,能够维护元素的次序,并且允许元素的重复。

3个具体实现类的相关区别如下:

1.ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要讲已经有数组的数据复制到新的存储空间中。当从ArrayList的中间位置插入或者删除元素时,需要对数组进行复制、移动、代价比较高。因此,它适合随机查找和遍历,不适合插入和删除。

2.Vector与ArrayList一样,也是通过数组实现的,不同的是它支持线程的同步,即某一时刻只有一个线程能够写Vector,避免多线程同时写而引起的不一致性,但实现同步需要很高的花费,因此,访问它比访问ArrayList慢。

3.LinkedList是用链表结构存储数据的,很适合数据的动态插入和删除,随机访问和遍历速度比较慢。另外,他还提供了List接口中没有定义的方法,专门用于操作表头和表尾元素,可以当作堆栈、队列和双向队列使用。

五、队列Queue、双端队列Deque简单了解

1、Queue

在java5中新增加了java.util.Queue接口,用以支持队列的常见操作。该接口扩展了java.util.Collection接口。

public interface Queue<E>
extends Collection<E> 

除了基本的 Collection 操作外,队列还提供其他的插入、提取和检查操作。

每个方法都存在两种形式:一种抛出异常(操作失败时),另一种返回一个特殊值(null 或 false,具体取决于操作)。

队列通常(但并非一定)以 FIFO(先进先出)的方式排序各个元素。不过优先级队列和 LIFO 队列(或堆栈)例外,前者根据提供的比较器或元素的自然顺序对元素进行排序,后者按 LIFO(后进先出)的方式对元素进行排序。

在 FIFO 队列中,所有的新元素都插入队列的末尾,移除元素从队列头部移除。

Queue使用时要尽量避免Collection的add()和remove()方法,而是要使用offer()来加入元素,使用poll()来获取并移出元素。它们的优点是通过返回值可以判断成功与否,add()和remove()方法在失败的时候会抛出异常。如果要使用前端而不移出该元素,使用element()或者peek()方法。

offer 方法可插入一个元素,否则返回 false。这与 Collection.add 方法不同,该方法只能通过抛出未经检查的异常使添加元素失败。

remove() 和 poll() 方法可移除和返回队列的头。到底从队列中移除哪个元素是队列排序策略的功能,而该策略在各种实现中是不同的。remove() 和 poll() 方法仅在队列为空时其行为有所不同:remove() 方法抛出一个异常,而 poll() 方法则返回 null。

element() 和 peek() 返回,但不移除,队列的头。

Queue 实现通常不允许插入 null 元素,尽管某些实现(如 LinkedList)并不禁止插入 null。即使在允许 null 的实现中,也不应该将 null 插入到 Queue 中,因为 null 也用作 poll 方法的一个特殊返回值,表明队列不包含元素。

值得注意的是LinkedList类实现了Queue接口,因此我们可以把LinkedList当成Queue来用。

import java.util.Queue;
import java.util.LinkedList;
public class TestQueue {
  public static void main(String[] args) {
    Queue<String> queue = new LinkedList<String>();
    queue.offer("Hello");
    queue.offer("World!");
    queue.offer("你好!");
    System.out.println(queue.size());
    String str;
    while((str=queue.poll())!=null){
      System.out.print(str);
    }
    System.out.println();
    System.out.println(queue.size());
  }
}

2、Deque

public interface Deque<E>
extends Queue<E> 

一个线性 collection,支持在两端插入和移除元素。

名称 deque 是“double ended queue(双端队列)”的缩写,通常读为“deck”。

大多数 Deque 实现对于它们能够包含的元素数没有固定限制,但此接口既支持有容量限制的双端队列,也支持没有固定大小限制的双端队列。

此接口定义在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。因为此接口继承了队列接口Queue,所以其每种方法也存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。

a、在将双端队列用作队列时,将得到 FIFO(先进先出)行为。将元素添加到双端队列的末尾,从双端队列的开头移除元素。从 Queue 接口继承的方法完全等效于 Deque 方法,如下表所示:

b、用作 LIFO(后进先出)堆栈。应优先使用此接口而不是遗留 Stack 类。在将双端队列用作堆栈时,元素被推入双端队列的开头并从双端队列开头弹出。堆栈方法完全等效于 Deque 方法,如下表所示:

(0)

相关推荐

  • Java数据结构之栈的基本定义与实现方法示例

    本文实例讲述了Java数据结构之栈的基本定义与实现方法.分享给大家供大家参考,具体如下: 一.概述: 1.基本概念: 栈是一种数据结构,是只能在某一端插入和删除的特殊线性表.它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来). 栈是允许在同一端进行插入和删除操作的特殊线性表.允许进行插入和删除操作的一端称为栈顶(top),另一端为栈底(bottom):栈底固定,而栈顶 浮动:栈中元素个数为零时称为空栈.插入一般

  • Java编程用两个栈实现队列代码分享

    题目:用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 经典题,不多说,直接上代码 import java.util.Stack; public class Solution { Stack<Integer> stack1 = new Stack<Integer>(); Stack<Integer> stack2 = new Stack<Integer>(); public void push(int node) { st

  • java中stack(栈)的使用代码实例

    java中stack类继承于vector,其特性为后进先出(lastinfirstout). 入栈和出栈实例图: 实例图的java代码实例: package com.lanhuigu.java.ListTest; import java.util.Stack; public class StackTest { public static void main(String[] args) { Stack<String> staffs = new Stack<String>(); //

  • Java栈之链式栈存储结构的实现代码

    Java栈之链式栈存储结构实现 一.链栈 采用单链表来保存栈中所有元素,这种链式结构的栈称为链栈. 二.栈的链式存储结构实现 package com.ietree.basic.datastructure.stack; /** * 链栈 * * Created by ietree * 2017/4/29 */ public class LinkStack<T> { // 定义一个内部类Node,Node实例代表链栈的节点 private class Node { // 保存节点的数据 priva

  • java 数据结构之栈与队列

    java 数据结构之栈与队列 一:对列 队列是一种先进先出的数据结构 实现代码: package Queue; /* * 使用java构建队列,并模拟实现队列的入队和出对方法 */ public class Queue { //队列类 private int maxSize; //定义队列的长度 private int[] arrQueue; //队列 private int rear; //定义队列的尾指针 private int front; //定义队列的头指针 private int e

  • 详解Java线程堆栈

    写在前面: 线程堆栈应该是多线程类应用程序非功能问题定位的最有效手段,可以说是杀手锏.线程堆栈最擅长与分析如下类型问题: 系统无缘无故CPU过高. 系统挂起,无响应. 系统运行越来越慢. 性能瓶颈(如无法充分利用CPU等) 线程死锁.死循环,饿死等. 由于线程数量太多导致系统失败(如无法创建线程等). 如何解读线程堆栈 如下面一段Java源代码程序: package org.ccgogoing.study.stacktrace; /** * @Author: LuoChong400 * @Des

  • java 数据结构中栈结构应用的两个实例

    java 数据结构中栈结构应用的两个实例 1.单词逆序. 要求从控制台读入一串字符,按回车结束输入,同时显示其逆序字符串. 对于颠倒顺序的操作,用栈来解决是很方便的.具体思想是把字符串中的每一个字符按顺序存入栈中,然后再一个一个的从栈中取出.这时就是按照逆序取出的字符串. // reverse.java // stack used to reverse a string // to run this program: C>java ReverseApp import java.io.*; //

  • 深入分析JAVA Vector和Stack的具体用法

    前面我们已经接触过几种数据结构了,有数组.链表.Hash表.红黑树(二叉查询树),今天再来看另外一种数据结构:栈. 什么是栈呢,我们先看一个例子:栈就相当于一个很窄的木桶,我们往木桶里放东西,往外拿东西时会发现,我们最开始放的东西在最底部,最先拿出来的是刚刚放进去的.所以,栈就是这么一种先进后出(FirstInLastOut,或者叫后进先出)的容器,它只有一个口,在这个口放入元素,也在这个口取出元素.那么我们接下来学习JDK中的栈. 一.Vector&Stack的基本介绍和使用 我们先看下JDK

  • 深入分析JAVA Synchronized关键字

    并发一致性的概念? 是利用锁的机制来实现同步的,锁机制有如下两种特性: 互斥性:即在同一时间只允许一个线程持有某个对象锁,通过这种特性来实现多线程中的协调机制,这样在同一时间只有一个线程对需同步的代码块(复合操作)进行访问.互斥性我们也往往称为操作的原子性. 可见性:必须确保在锁被释放之前,对共享变量所做的修改,对于随后获得该锁的另一个线程是可见的(即在获得锁时应获得最新共享变量的值),否则另一个线程可能是在本地缓存的某个副本上继续操作从而引起不一致. Synchronized的用法? 1.同步

  • 深入分析java与C#底层控制能力区别及示例详解

    目录 大家好,我是辣条. 刷到了一个很有意思的问题,Java和C#最大的不同是什么,辣条对Java和C#都没有研究的特别深,但是下面这个回答可供大家参考,同时欢迎大家在评论留下自己的看法. 我觉得抛开语法而谈,最主要的还是对底层的控制能力不同. 比如在 C# 里面你能干的: var x = new int[10]; fixed (int* p = x) { Console.WriteLine(*((long*)p - 1)); // 10 } 上述代码会输出 10,为什么?因为 .NET 中数组

  • Java中的接口和抽象类用法实例详解

    本文实例讲述了Java中的接口和抽象类用法.分享给大家供大家参考,具体如下: 在面向对象的概念中,我们知道所有的对象都是通过类来描绘的,但是并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类. 抽象类往往用来表征我们在对问题领域进行分析. 设计中得出的抽象概念,是对一系列看上去不同,但是本质上相同的具体概念的抽象,我们不能把它们实例化(拿不出一个具体的东西)所以称之为抽象. 比如:我们要描述"水果",它就是一个抽象,它有质量.体积等

  • Java Vector类详解及实例代码

    Java Vector类  Vector的特有功能 Vector出现较早,比集合更早出现 1:添加功能 public void addElement(Object obj);//用add()替代 2:获取功能 public Object elementAt(int index);//用get()替代 public Enumeration elements();//返回的是实现类的对象,用Iterator iterator() import java.util.Enumeration; impor

  • Java Web开发之MD5加密用法分析

    本文实例讲述了Java Web开发之MD5加密用法.分享给大家供大家参考.具体如下: MD5是Message Digest 5的缩写,是一种加密算法,能够对字节数组进行加密,有如下特点: ① 不能根据加密后的信息找加密之前的信息: ② 加密后的结果是128位: ③ 对于给定的字节数组,不管什么时候采用这种加密算法,结果是相同的: ④ 对于不同的字节数组,加密的结果是不相同的. 在Web应用中通常需要对用户设置的密码进行加密之后再存储,否则数据库管理员能够看到明文的密码,并且密码也有被黑客获取的危

  • Java责任链模式定义与用法分析

    本文实例讲述了Java责任链模式定义与用法.分享给大家供大家参考,具体如下: 使很多对象都有处理请求的机会,从而避免请求的发送者和接受者之间的耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止 责任链模式主要包括以下几个角色 1.处理者:处理者是一个接口,负责规定具体处理者处理用户请求的方法以及具体处理者设置后继处理对象的方法 2.具体处理者:具体处理者是实现处理接口的类的实例,具体处理者通过调用处理接口规定的方法处理用户的请求,既在接到用户的请求后,处理者将调用接

  • Java枚举的七种常见用法总结(必看)

    用法一:常量 在JDK1.5之前,我们定义常量都是:publicstaticfianl.....现在好了,有了枚举,可以把相关的常量分组到一个枚举类型里,而且枚举提供了比常量更多的方法. Java代码 public enum Color { RED, GREEN, BLANK, YELLOW } 用法二:switch JDK1.6之前的switch语句只支持int,char,enum类型,使用枚举,能让我们的代码可读性更强. Java代码 enum Signal { GREEN, YELLOW,

  • java interface的两个经典用法

    本文为大家分享了java interface的两个经典用法,供大家参考,具体内容如下 1.Java多态接口动态加载实例 编写一个通用程序,用来计算没一种交通工具运行1000公里所需的时间,已知每种交通工具的参数都为3个整数A.B.C的表达式.现有两种工具:Car和Plane,其中Car的速度运算公式为:A+B+C.需要编写三个类:ComputeTime.java,Palne.java,Car.java和接口Common.java.要求在未来如果增加第3中交通工具的时候,不必修改 以前的任何程序,

  • Java中BigDecimal类的简单用法

    本文实例讲述了Java中BigDecimal类的简单用法,是Java程序设计中非常实用的技巧,分享给大家供大家参考.具体用法分析如下: 一般来说,一提到Java里面的商业计算,我们都知道不能用float和double,因为他们无法进行精确计算.但是Java的设计者给编程人员提供了一个很有用的类BigDecimal,他可以完善float和double类无法进行精确计算的缺憾.BigDecimal类位于java.maths类包下.首先我们来看下如何构造一个BigDecimal对象.它的构造函数很多,

随机推荐