python实现基于SVM手写数字识别功能

本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下

1、SVM手写数字识别

识别步骤:
(1)样本图像的准备。
(2)图像尺寸标准化:将图像大小都标准化为8*8大小。
(3)读取未知样本图像,提取图像特征,生成图像特征组。
(4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。

识别代码:

#!/usr/bin/env python
import numpy as np
import mlpy
import cv2
print 'loading ...'

def getnumc(fn):
 '''返回数字特征'''
 fnimg = cv2.imread(fn) #读取图像
 img=cv2.resize(fnimg,(8,8)) #将图像大小调整为8*8
 alltz=[]
 for now_h in xrange(0,8):
  xtz=[]
  for now_w in xrange(0,8):
   b = img[now_h,now_w,0]
   g = img[now_h,now_w,1]
   r = img[now_h,now_w,2]
   btz=255-b
   gtz=255-g
   rtz=255-r
   if btz>0 or gtz>0 or rtz>0:
    nowtz=1
   else:
    nowtz=0
   xtz.append(nowtz)
  alltz+=xtz
 return alltz

#读取样本数字
x=[]
y=[]
for numi in xrange(1,10):
 for numij in xrange(1,5):
  fn='nums/'+str(numi)+'-'+str(numij)+'.png'
  x.append(getnumc(fn))
  y.append(numi)

x=np.array(x)
y=np.array(y)
svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10)
svm.learn(x, y)
print u"训练样本测试:"
print svm.pred(x)
print u"未知图像测试:"
for iii in xrange (1,10):
 testfn= 'nums/test/'+str(iii)+'-test.png'
 testx=[]
 testx.append(getnumc(testfn))
 print
 print testfn+":",
 print svm.pred(testx)

样本:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Python实现对PDF文件的OCR识别

    最近在做一个项目的时候,需要将PDF文件作为输入,从中输出文本,然后将文本存入数据库中.为此,我找寻了很久的解决方案,最终才确定使用tesseract.所以不要浪费时间了,我们开始吧. 1.安装tesseract 在不同的系统中安装tesseract非常容易.为了简便,我们以Ubuntu为例. 在Ubuntu中你仅仅需要运行以下命令: 这将会安装支持3种不同语言的tesseract. 2.安装PyOCR 现在我们还需要安装tesseract的Python接口.幸运的是,有许多出色的Python接

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • 详解Python验证码识别

    以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式.这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别. 以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagi

  • python下调用pytesseract识别某网站验证码的实现方法

    一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Python-tesseract is a wrapper for google's Tesseract-OCR ( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a stand-alone invocation scrip

  • Python中利用Scipy包的SIFT方法进行图片识别的实例教程

    scipy scipy包包含致力于科学计算中常见问题的各个工具箱.它的不同子模块相应于不同的应用.像插值,积分,优化,图像处理,,特殊函数等等. scipy可以与其它标准科学计算程序库进行比较,比如GSL(GNU C或C++科学计算库),或者Matlab工具箱.scipy是Python中科学计算程序的核心包;它用于有效地计算numpy矩阵,来让numpy和scipy协同工作. 在实现一个程序之前,值得检查下所需的数据处理方式是否已经在scipy中存在了.作为非专业程序员,科学家总是喜欢重新发明造

  • python实现识别相似图片小结

    文章简介 在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 如有错误,请多包涵和多多指教. 参考的文章和图片来源会在底部一一列出. 以及本篇文章所用的代码都会在底下给出github地址. 安装相关库 python用作图像处理的相关库主要有openCV(C++编写,提供了python语言的接口),PIL,

  • python验证码识别的实例详解

    其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧. 依赖 sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract 利用google ocr来识别验证码 from PIL import Image import pytesseract image = Image

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

随机推荐