OpenCV + MFC实现简单人脸识别

用VS2010 + OpenCV 2.4.9 实现简单人脸识别

首先放效果图(为了防止辣眼睛,后期处理了下):

首先声明,我是在参考其他文章的基础上实现的。

切入正题:

1 设置控件

首先新建一个基于Dialog的MFC程序的工程,工程名为FaceDetect ;
然后在IDD_FACEDETECT_DIALOG对话框中添加一个Picture 控件,ID命名为:IDC_PICTURE;添加一个Button控件,Caption命名为 “检测”,ID命名为IDC_START,将原来自动生成的的OK按钮的Caption改为“退出”;
删除原来的Text控件和“Cancel”控件。

2 定义变量

在FaceDetectDlg.h开头添加以下几行代码

#pragma once
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp”
using namespace std;
using namespace cv;

然后在CFaceDetectDlg类定义一下几个变量

public:
  String face_cascade_name;
  String eyes_cascade_name;
  CascadeClassifier face_cascade;
  CascadeClassifier eyes_cascade;
  VideoCapture capture;

3 对定义的变量初始化

CFaceDetectDlg::CFaceDetectDlg(CWnd* pParent /*=NULL*/)
  : CDialogEx(CFaceDetectDlg::IDD, pParent)
{
  m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
  string face_cascade_name = "";
  string eyes_cascade_name = "";
}
BOOL CFaceDetectDlg::OnInitDialog()
{
  CDialogEx::OnInitDialog();

  // Add "About..." menu item to system menu.

  // IDM_ABOUTBOX must be in the system command range.
  ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
  ASSERT(IDM_ABOUTBOX < 0xF000);

  CMenu* pSysMenu = GetSystemMenu(FALSE);
  if (pSysMenu != NULL)
  {
    BOOL bNameValid;
    CString strAboutMenu;
    bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);
    ASSERT(bNameValid);
    if (!strAboutMenu.IsEmpty())
    {
      pSysMenu->AppendMenu(MF_SEPARATOR);
      pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
    }
  }

  // Set the icon for this dialog. The framework does this automatically
  // when the application's main window is not a dialog
  SetIcon(m_hIcon, TRUE);     // Set big icon
  SetIcon(m_hIcon, FALSE);    // Set small icon

  // TODO: Add extra initialization here
  string face_cascade_name = "..\\debug\\haarcascade_frontalface_alt.xml";
  string eyes_cascade_name = "..\\debug\\haarcascade_eye_tree_eyeglasses.xml";
  if( !face_cascade.load( face_cascade_name ) )
  {
    MessageBox(_T("haarcascade_frontalface_alt.xml Error loading"));
    return -1;
  };

  if( !eyes_cascade.load( eyes_cascade_name ) )
  {
    MessageBox(_T(" haarcascade_eye_tree_eyeglasses.xmlError loading"));
    return -1;
  };

  return TRUE; // return TRUE unless you set the focus to a control
}

4 检测函数的编写

思路是这样的:

1.首先打开摄像头
2.然后将摄像托获取的图像传递给人脸识别的函数
3.将识别后处理过的图像在Picture控件中显示出来

双击IDD_FACEDETECT_DIALOG对话框上的上的“检测”按钮控件,进入控件函数编写的地方,该函数如下所示:

void CFaceDetectDlg::OnBnClickedStart()
{
  // TODO: Add your control notification handler code here
  capture.open(0);//捕获外部摄像头,如果只有一个摄像头,就填0
  Mat frame;
  namedWindow("view", WINDOW_AUTOSIZE);

  HWND hWnd = (HWND)cvGetWindowHandle("view");
  HWND hParent = ::GetParent(hWnd);

  ::SetParent(hWnd, GetDlgItem(IDC_PICTURE)->m_hWnd);
  ::ShowWindow(hParent, SW_HIDE);//隐藏运行程序框,并且把它“画”到MFC上

  if (capture.isOpened())
  {
    for (;;)//循环以达到视频的效果
    {
      capture >> frame;

      if (!frame.empty())
      {
        detectAndDisplay(frame);//识别的函数

        imshow("view", frame);
        UpdateData(FALSE);
      }
      else
      {
        //::AfxMessageBox(" --(!) No captured frame -- Break!");

        continue;
        //break;
      }

      waitKey(10);
    }

  }

}

以上代码中 detectAndDisplay(frame)语句表示调用了 detectAndDisplay(Mat frame)函数,因此我们得声明和定义该函数。

在CFaceDetectDlg类的头文件FaceDetectDlg.h中声明该函数:

void detectAndDisplay(Mat frame);//声明函数

在FaceDetectDlg.cpp中定义该函数:

void CFaceDetectDlg::detectAndDisplay( Mat frame )
{
  std::vector<Rect> faces;
  Mat frame_gray;

  cvtColor( frame, frame_gray, CV_BGR2GRAY );
  equalizeHist( frame_gray, frame_gray );

  //-- 多尺寸检测人脸
  face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

  for( int i = 0; i < faces.size(); i++ )
  {
    Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
    ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );

    Mat faceROI = frame_gray( faces[i] );
    std::vector<Rect> eyes;

    //-- 在每张人脸上检测双眼
    eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

    for( int j = 0; j < eyes.size(); j++ )
    {
      Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );
      int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
      circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
    }
  }

}

编译运行

编译工程,然后将
haarcascade_frontalface_alt.xml 和 haarcascade_eye_tree_eyeglasses.xml拷贝到工程目录文件下Debug文件夹里,也就是可执行文件所在的那个文件夹。

以上基本上可以实现预期的人脸识别功能,可是我们可以发现此时点击“退出”按钮时,摄像头的灯还亮着,那是因为摄像头在程序退出后没有关闭掉,因此还得添加代码关闭摄像头。

双击“退出”按钮,编辑代码如下

void CFaceDetectDlg::OnBnClickedOk()
{
  // TODO: Add your control notification handler code here
  capture.release(); //关闭摄像头
  CDialogEx::OnOK();
}

后记

以后我将把这个工程的代码公布在我的Github上,希望能对其他人有所帮助。
代码已上传至 :MFC-OpenCV-

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV实现人脸识别

    主要有以下步骤: 1.人脸检测 2.人脸预处理 3.从收集的人脸训练机器学习算法 4.人脸识别 5.收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域而言,会有眼睛所在区域应该比前额和脸颊更暗,嘴巴应该比脸颊更暗等情形.它通常执行大约20个这样的比较来决定所检测的对象是否为人脸,实际上经常会做上千次. 基于LBP的人脸检测器基本思想与基于Haar的人脸检测器类似,但它比较的是像素亮度直方图,例如,边缘.角落和平坦区域的直方图. 这两种人脸检测器可通过训练大的图

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • 基于OpenCV的PHP图像人脸识别技术

    openCV是一个开源的用C/C++开发的计算机图形图像库,非常强大,研究资料很齐全.本文重点是介绍如何使用php来调用其中的局部的功能.人脸侦查技术只是openCV一个应用分支. 1.安装 从源代码编译成一个动态的so文件. 1.1.安装 OpenCV (OpenCV 1.0.0) 下载地址:http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948 #tar xvzf OpenCV-1.0.0.ta

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

  • python opencv3实现人脸识别(windows)

    本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

  • OPENCV+JAVA实现人脸识别

    本文实例为大家分享了JAVA实现人脸识别的具体代码,供大家参考,具体内容如下 官方下载 安装文件 ,以win7为例,下载opencv-2.4.13.3-vc14.exe 安装后,在build目录下 D:\opencv\build\java,获取opencv-2413.jar,copy至项目目录 同时需要dll文件 与 各 识别xml文件,进行不同特征的识别(人脸,侧脸,眼睛等) dll目录:D:\opencv\build\java\x64\opencv_java2413.dll xml目录:D:

随机推荐