Python 使用Numpy对矩阵进行转置的方法

如下所示:

matrix.py

#!/usr/bin/python
# -*- encoding:UTF-8-*-
import pprint
import numpy as np

matrix = [[1,2],[3,4],[5,6]]
print('列表:')
pprint.pprint(matrix)
matrix_2 = np.matrix(matrix)
print('原矩阵:')
pprint.pprint(matrix_2)
matrix_transpose = np.transpose(matrix_2)
print('转置后:')
pprint.pprint(matrix_transpose)

关于矩阵:

线性代数学的矩阵,学了些矩阵的概念、运算,没仔细推敲矩阵可以用什么数据结构来表示,现在一想比较清楚了,可以用普遍的二维数组来表示,现在想到也可以用Python中嵌套的列表来表示,应该是只要是二维可方便寻址的就行。

以上这篇Python 使用Numpy对矩阵进行转置的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python矩阵常见运算操作实例总结

    本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

  • python 实现矩阵上下/左右翻转,转置的示例

    python中没有二维数组,用一个元素为list的list(matrix)保存矩阵,row为行数,col为列数 1. 上下翻转:只需要把每一行的list交换即可 for i in range(row // 2): matrix[i], matrix[row-1-i] = matrix[row-1-i], matrix[i] 2. 左右翻转:需要逐个交换元素 for m in matrix: for j in range(col // 2): m[j], m[col-1-j] = m[col-1-

  • Python中矩阵创建和矩阵运算方法

    矩阵创建 1.from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2.data2=mat(ones((2,4))) 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int 3.data5=mat(random.randint(2,8,size=(2,5)) 产生一个2-8之间的随机整数矩阵 4.data3=mat(random.rand(2,2)) 这里的random模块使用的是num

  • Python实现矩阵转置的方法分析

    本文实例讲述了Python实现矩阵转置的方法.分享给大家供大家参考,具体如下: 前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加.例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等. 其实不动脑筋的话,用个二重循环很容易写出来: def trans(m): a = [[] for i in m[0]] for i in m: f

  • Python实现矩阵相乘的三种方法小结

    问题描述 分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图. 解题方法 本文采用了以下方法进行求值:矩阵计算法.定义法.分治法和Strassen方法.这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,

  • python矩阵的转置和逆转实例

    如下所示: # 矩阵的转置 def transpose(list1): return [list(row) for row in zip(*list1)] list1 = [[1, 4], [2, 5], [3, 6]] print(transpose(list1)) # [[1, 2, 3], [4, 5, 6]] 矩阵转置 用zip将一系列可迭代对象中的元素打包为元组,之后将这些元组放置在列表中,两步加起来等价于行列转置. # 矩阵逆转 def invert(list1): return [

  • 对python 矩阵转置transpose的实例讲解

    在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(path) arr_img = np.asarray(img, dtype='float64') arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb.再把这些元素一字排开 transpose是什么意识呢?

  • Python实现的矩阵转置与矩阵相乘运算示例

    本文实例讲述了Python实现的矩阵转置与矩阵相乘运算.分享给大家供大家参考,具体如下: 矩阵转置 方法一 :使用常规的思路 def transpose(M): # 初始化转置后的矩阵 result = [] # 获取转置前的行和列 row, col = shape(M) # 先对列进行循环 for i in range(col): # 外层循环的容器 item = [] # 在列循环的内部进行行的循环 for index in range(row): item.append(M[index][

  • Python 使用Numpy对矩阵进行转置的方法

    如下所示: matrix.py #!/usr/bin/python # -*- encoding:UTF-8-*- import pprint import numpy as np matrix = [[1,2],[3,4],[5,6]] print('列表:') pprint.pprint(matrix) matrix_2 = np.matrix(matrix) print('原矩阵:') pprint.pprint(matrix_2) matrix_transpose = np.transp

  • Python基于numpy灵活定义神经网络结构的方法

    本文实例讲述了Python基于numpy灵活定义神经网络结构的方法.分享给大家供大家参考,具体如下: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能! 一.用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测 说明: 输入层节点数目:3 隐藏层节点数目:4 输出层节点数目:2 2).定义一个五层神经网络:

  • Python中Numpy包的安装与使用方法简明教程

    本文实例讲述了Python中Numpy包的安装与使用方法.分享给大家供大家参考,具体如下: Numpy包的安装 准备工作 1. Python安装 2. pip安装(如使用pip安装命令:pip install numpy) 3. 将pip所在的文件夹添加到环境变量path路径中 4. 下载相应的Numpy安装包,.whl格式.下载链接. 以上准备工作准备完毕之后,进行Numpy安装,先进入whl安装包的存放目录.比如在C盘: cd C:\ 再使用命令行安装: pip install numpy文

  • python中numpy.zeros(np.zeros)的使用方法

    翻译: 用法:zeros(shape, dtype=float, order='C') 返回:返回来一个给定形状和类型的用0填充的数组: 参数:shape:形状 dtype:数据类型,可选参数,默认numpy.float64 dtype类型: t ,位域,如t4代表4位 b,布尔值,true or false i,整数,如i8(64位) u,无符号整数,u8(64位) f,浮点数,f8(64位) c,浮点负数, o,对象, s,a,字符串,s24 u,unicode,u24 order:可选参数

  • python中numpy的矩阵、多维数组的用法

    1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

  • Python numpy中矩阵的基本用法汇总

    Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价. 直接看一个例子: import numpy as np a = np.mat('1 3;5 7')

  • 基于Python中numpy数组的合并实例讲解

    Python中numpy数组的合并有很多方法,如 - np.append() - np.concatenate() - np.stack() - np.hstack() - np.vstack() - np.dstack() 其中最泛用的是第一个和第二个.第一个可读性好,比较灵活,但是占内存大.第二个则没有内存占用大的问题. 方法一--append parameters introduction arr 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) values 用来合并到上述数组

  • Python numpy 提取矩阵的某一行或某一列的实例

    如下所示: import numpy as np a=np.arange(9).reshape(3,3) a Out[31]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) 矩阵的某一行 a[1] Out[32]: array([3, 4, 5]) 矩阵的某一列 a[:,1] Out[33]: array([1, 4, 7]) b=np.eye(3,3) b Out[36]: array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0.,

  • Python编程给numpy矩阵添加一列方法示例

    首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]]) b = np.ones(3) c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]]) PRint(a) print(b) print(c) [[1 2 3] [4 5 6] [7 8 9]] [ 1. 1. 1.] [[1 2 3 1] [4

随机推荐