python中对数据进行各种排序的方法

Python列表具有内置的 list.sort()方法,可以在原地修改列表。 还有一个 sorted()内置的函数从迭代构建一个新的排序列表。在本文中,我们将探讨使用Python排序数据的各种技术。

请注意,sort()原始数据被破坏,sorted()没有对原始数据进行操作,而是新建了一个新数据。

一、基本的排序

最基本的排序很简单。只要使用sorted()函数即可返回一个 新的排序的列表

>>>sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

咱们也可以使用 list.sort()方法。该方法是对列表list进行的原地操作(原数据被修改,已经不是原来的本来面目)。一般情况下,不如使用 sorted()方便,但是如果你不需要原列表list,使用 sort()会更具效率。

>>>a = [5, 2, 3, 1, 4]
>>>a.sort()
>>>a #a发生改变
[1, 2, 3, 4, 5]

另一个不同点, list.sort()方法只能应用于列表对象数据。而 sorted()却可以对任何可迭代对象进行排序。也就是说sorted()更具有普遍使用性。这里大灯建议初学者使用sorted()。

二、Key参数函数

list.sort()和 sorted()都有key参数,可以指定函数来对元素进行排序。

例如,这里我们使用一个字符串(字符串也是可迭代对象)

>>>sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

我们指定按照首字符(统一变为小写后的字符)进行排序。 key参数的值是一个带有单一参数的函数,返回一个键key用于排序。这种技术运行挺快的,具体为啥,我不懂。

例如:

>>>student_tuples = [
... ('john', 'A', 15),
... ('jane', 'B', 12),
... ('dave', 'B', 10)]
>>>sorted(student_tuples, key = lambda student:student[2])
"""

通过key排序。

key的值: lambda函数

lambda函数的参数 是student_tuples列表中的元素-元组

lambda函数运算的是 student_tuples列表元素中元组的第三个元素。

"""
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样该方法也可作用于对象的属性。例如这里我先定义一个属性

>>> class Student:
... def __init__(self, name, grade, age):
... self.name = name
... self.grade = grade
... self.age = age
... def __repr__(self):
... return repr((self.name, self.grade, self.age))
>>> student_objects = [
... Student('john', 'A', 15),
... Student('jane', 'B', 12),
... Student('dave', 'B', 10)]
>>> sorted(student_objects, key=lambda student: student.age)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

三、Operator库的方法

上面列的那些key函数方法都是非常常见,所以说python提供简洁高效的方法。 operator库有 itemgetter(), attrgetter(), methodcaller()这三个方法。

使用上面提到的operator库的方法,也可以实现上述例子,而且更简单,运行更快。

>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator库的方法可以提供多维度排序。例如我们队成绩和年龄同时排序,但成绩的优先级高于年龄。

>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

四、升序与降序

list.sort()和 sorted()都可以通过reverse参数(True或False)进行升降序调整。这里我们对student数据中 年龄age进行翻转排序规则。

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

五、排序稳定性和复杂排序

排序要保障稳定,这意味着当多个记录拥有同一个key时,原始的数据中的排序会保留下来。

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意为何两个记录中的blue保留了原始数据的数据,所以按照原始数据顺序,('blue', 1)比('blue', 2)优先。

这个奇妙的特性让咱们可以使用一系列排序步骤来构建复杂的排序方法。例如,对student数据的 成绩grade进行降序,再对 年龄age进行升序排序。实现方法:首先对age排序,再对grade排序。

>>> s = sorted(student_objects, key=attrgetter('age'))
>>> sorted(s, key=attrgetter('grade'), reverse=True)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

六、老办法-使用cmp参数

cmp也就是compare,对比比较。在2.x时代,都支持cmp参数方法。

在3.x中,cmp参数被彻底移除。

在2.x中,sort允许一个可选的函数,可以进行比较compare。 该功能应该采取要比较两个参数,然后返回的负值代表小于;返回零,代表相等;正值代表大于。 在3.x中,使用cmp思想,我们可以这样做:

>>> def numeric_compare(x, y):
... return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5]

如果想让排序变为降序,可以使用下面

>>> def reverse_numeric(x, y):
... return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1]

总结

以上所述是小编给大家介绍的python中对数据进行各种排序的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python cookbook(数据结构与算法)实现对不原生支持比较操作的对象排序算法示例

    本文实例讲述了Python实现对不原生支持比较操作的对象排序算法.分享给大家供大家参考,具体如下: 问题:想在同一个类的实例之间做排序,但是它们并不原生支持比较操作. 解决方案:使用内建的sorted()函数可接受一个用来传递可调用对象的参数key,sorted利用该可调用对象返回的待排序对象中的某些值来比较对象. from operator import attrgetter class User: def __init__(self, user_id): self.user_id = use

  • python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import numpy as np import pandas as pd data1 = pd.DataFrame({'level':['a','b','c','d'], 'numeber':[1,3,5,7]}) data2=pd.DataFrame({'level':['a','b','c','e'], '

  • Python cookbook(数据结构与算法)通过公共键对字典列表排序算法示例

    本文实例讲述了Python通过公共键对字典列表排序算法.分享给大家供大家参考,具体如下: 问题:想根据一个或多个字典中的值来对列表排序 解决方案:利用operator模块中的itemgetter()函数对这类结构进行排序是非常简单的. # Sort a list of a dicts on a common key rows = [ {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003}, {'fname': 'David', 'lname': 'Be

  • python算法与数据结构之冒泡排序实例详解

    一.冒泡排序介绍 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 二.冒泡排序原理 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.这一步做完,最后的元素应该会是最大的数. 针对所有的

  • python中对数据进行各种排序的方法

    Python列表具有内置的 list.sort()方法,可以在原地修改列表. 还有一个 sorted()内置的函数从迭代构建一个新的排序列表.在本文中,我们将探讨使用Python排序数据的各种技术. 请注意,sort()原始数据被破坏,sorted()没有对原始数据进行操作,而是新建了一个新数据. 一.基本的排序 最基本的排序很简单.只要使用sorted()函数即可返回一个 新的排序的列表 >>>sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5] 咱们也可以使

  • Python数据结构与算法(几种排序)小结

    Python数据结构与算法(几种排序) 数据结构与算法(Python) 冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 冒泡排序算法的运作如下: 比较相邻的元素.如果第一个比第二个大(升序),就交换他们两个. 对每一对相邻元素作同样的工作,从

  • Python学习笔记_数据排序方法

    1. 原地排序:采用sort()方法,按照指定的顺序排列数据后用排序后的数据替换原来的数据(原来的顺序丢失),如: 复制代码 代码如下: >>> data1=[4,2,6,432,78,43,22,896,42,677,12]>>> data1.sort()>>> data1       #原来的顺序被替换[2, 4, 6, 12, 22, 42, 43, 78, 432, 677, 896] 2. 复制排序:采用sorted()内置函数,按照指定的顺

  • Python实现的数据结构与算法之快速排序详解

    本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中

  • Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】

    本文实例讲述了Python数据结构与算法之常见的分配排序法.分享给大家供大家参考,具体如下: 箱排序(桶排序) 箱排序是根据关键字的取值范围1~m,预先建立m个箱子,箱排序要求关键字类型为有限类型,可能会有无限个箱子,实用价值不大,一般用于基数排序的中间过程. 桶排序是箱排序的实用化变种,其对数据集的范围,如[0,1) 进行划分为n个大小相同的子区间,每一个子区间为一个桶,然后将n非记录分配到各桶中.因为关键字序列是均匀分布在[0,1)上的,所以一般不会有很多记录落入同一个桶中. 以下的桶排序方

  • python中DataFrame数据合并merge()和concat()方法详解

    目录 merge() 1.常规合并 ①方法1 ②方法2 重要参数 合并方式 left right outer inner 2.多对一合并 3.多对多合并 concat() 1.相同字段的表首位相连 2.横向表合并(行对齐) 3.交叉合并 总结 merge() 1.常规合并 ①方法1 指定一个参照列,以该列为准,合并其他列. import pandas as pd df1 = pd.DataFrame({'id': ['001', '002', '003'], 'num1': [120, 101,

  • Python中寻找数据异常值的3种方法

    目录 1. 引言 2. 举个栗子 3. 孤立森林 4. 椭圆模型拟合 5. 局部异常因子算法 6. 挑选异常值检测方法 7. 异常值消除 8. 总结 1. 引言 在数据处理.机器学习等领域,我们经常需要对各式各样的数据进行处理,本文重点介绍三种非常简单的方法来检测数据集中的异常值. 2. 举个栗子 为了方便介绍,这里给出我们的测试数据集,如下: data = pd.DataFrame([ [87, 82, 85], [81, 89, 75], [86, 87, 69], [91, 79, 86]

  • Python中字符串List按照长度排序

    下面看下字符串List按照长度排序(python)的实现方法 myList = ['青海省','内蒙古自治区','西藏自治区','新疆维吾尔自治区','广西壮族自治区'] 1.首先得到每个字符串长度 2.排序,选择sorted或者 list.sort()进行排序 内置sorted返回一个新的列表,而list.sort是对列表进行操作 sorted(iterable, cmp=None, key=None, reverse=False) iterable:是可迭代类型; cmp:用于比较的函数,比

  • 一文搞懂Python中Pandas数据合并

    目录 1.concat() 主要参数 示例 2.merge() 参数 示例 3.append() 参数 示例 4.join() 示例 数据合并是数据处理过程中的必经环节,pandas作为数据分析的利器,提供了四种常用的数据合并方式,让我们看看如何使用这些方法吧! 1.concat() concat() 可用于两个及多个 DataFrame 间行/列方向进行内联或外联拼接操作,默认对行(沿 y 轴)取并集. 使用方式 pd.concat( objs: Union[Iterable[~FrameOr

  • 用C语言实现从文本文件中读取数据后进行排序的功能

    功能介绍 程序的功能是从外部读取一个包括int型数据的文本文件,然后将它保存到内部临时数组,对数组进行排序后,以文本形式输出到指定的文件上.因为是int类型的数据,没有很严重的损失精度的问题. 正常运行要求: 包括数据的源文件内不能包括其他任何除数字和空白字符(空格,制表符,换行符)之外的任何字符,源文件最开始必须是数字字符,要保证源文件的数据计数正确.同时保证文件名有效. 运行结果 data.txt: obj.txt: 完整代码 警告:版权所有,谨供参考! #include <stdio.h>

  • Python实现字典排序、按照list中字典的某个key排序的方法示例

    本文实例讲述了Python实现字典排序.按照list中字典的某个key排序的方法.分享给大家供大家参考,具体如下: 1.给字典按照value按照从大到小排序 排序 dict = {'a':21, 'b':5, 'c':3, 'd':54, 'e':74, 'f':0} new_dict = sorted(dict.iteritems(), key=lambda d:d[1], reverse = True) print new_dict 输出: [('e', 74), ('d', 54), ('

  • 利用python将json数据转换为csv格式的方法

    假设.json文件中存储的数据为: {"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "coordinates": [116.37256372996957, 40.39798447055443], "category": "经济型", "name": &qu

  • Python实现导出数据生成excel报表的方法示例

    本文实例讲述了Python实现导出数据生成excel报表的方法.分享给大家供大家参考,具体如下: #_*_coding:utf-8_*_ import MySQLdb import xlwt from datetime import datetime def get_data(sql): # 创建数据库连接. conn = MySQLdb.connect(host='127.0.0.1',user='root'\ ,passwd='123456',db='test',port=3306,char

  • python3.4用循环往mysql5.7中写数据并输出的实现方法

    如下所示: #!/usr/bin/env python # -*- coding:utf-8 -*- # __author__ = "blzhu" """ python study Date:2017 """ import pymysql # import MySQLdb #python2中的产物 try: # 获取一个数据库连接,注意如果是UTF-8类型的,需要制定数据库 conn = pymysql.connect(hos

随机推荐