python使用mysql的两种使用方式

Python操作MySQL主要使用两种方式:

  • 原生模块 pymsql
  • ORM框架 SQLAchemy

pymql

pymsql是Python中操作MySQL的模块,在windows中的安装:

pip install pymysql

入门:我们连接虚拟机中的centos中的mysql,然后查询test数据库中student表的数据

import pymysql
#创建连接
conn = pymysql.connect(host='192.168.123.207',port=3306,user='root',passwd='root',db="test");
#创建游标
cursor = conn.cursor()
#执行sql,并返回受影响的行数
effect_row = cursor.execute("select * from student")
print(effect_row)

运行结果:

需要给权限

mysql> grant all on *.* to 'root'@'%' identified by 'root';
Query OK, 0 rows affected, 1 warning (0.01 sec)
mysql> flush privileges;
Query OK, 0 rows affected (0.01 sec)

这个时候我们在运行上面的程序我们就可以看到,运行成功

这是说明查询到了5条数据,那如果我们需要查看这五条具体的数据是什么,我们要用:

print(cursor.fetchone())

cursor.fetchone()是一条一条的把数据取出来

这里我们用了两条cursor.fetchone()

如果我们想要只取出前3条数据:

print('>>>>>',cursor.fetchmany(3))

一次性取出所有数据:

print('------',cursor.fetchall())

如果我们要插入多条数据:

import pymysql
#创建连接
conn = pymysql.connect(host='192.168.123.207',port=3306,user='root',passwd='root',db="test");
#创建游标
cursor = conn.cursor()
data = [
 ("N1",23,"2015-01-01","M"),
 ("N2",24,"2015-01-02","F"),
 ("N3",25,"2015-01-03","M"),
]
#执行sql,并返回受影响的行数
effect_row = cursor.executemany("insert into student (name,age,register_date,gender)values(%s,%s,%s,%s)",data)
conn.commit()

注:executemany默认会启动一个事务,如果没有conn.commit(),数据将不会被插入成功

sqlalchemy ORM

1.ORM介绍

orm英文全称object relational mapping,就是对象映射关系程序,简单来说类似python这种面向对象的程序来说一切皆对象,我们实例化一个对象,通过点的形式来调用里面的函数。orm相当于把数据库给实例化了,数据库都是关系型的,通过orm将编程语言的对象模型和数据库的关系模型建立映射关系,这样我们在使用编程语言对数据库进行操作的时候可以直接使用编程语言的对象模型进行操作就可以了,而不用直接使用sql语言。

优点:

1.隐藏了数据访问细节,“封闭”的通用数据库交互,ORM的核心。他使得我们的通用数据库交互变得简单易行,并且完全不用考虑该死的SQL语句

2.ORM使我们构造固化数据结构变得简单易行

2.sqlalchemy安装

安装:

pip install sqlalchemy

3.sqlalchemy基本使用

首先我们看一下我们没有用orm之前我们创建一个数据表是这个样的:

create table student(
 id int auto_increment,
 name char(32) not null,
 age int not null,
 register_date date not null,
 primary key(id)
);

使用了orm,实现上面的表的创建,代码如下:

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/test",encoding='utf-8',echo=True)
Base = declarative_base()#生成orm基类

class User(Base):
 __tablename__ = 'user'#表名
 id = Column(Integer,primary_key=True)
 name = Column(String(32))
 password = Column(String(64))
Base.metadata.create_all(engine)#创建表结构

用orm创建一条数据:

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/test",encoding='utf-8',echo=True)
Base = declarative_base()#生成orm基类
class User(Base):
  __tablename__ = 'user'#表名
  id = Column(Integer,primary_key=True)
  name = Column(String(32))
  password = Column(String(64))
Base.metadata.create_all(engine)#创建表结构
Session_class = sessionmaker(bind=engine)#创建与数据库的会话session class ,注意这里返回给session的是一个类,不是实例
Session = Session_class()#生成session实例
user_obj = User(name = "xiaoming" , password = "123456")#生成你要创建的数据对象
user_obj2 = User(name = "jack" , password = "123564")#生成你要创建的数据对象
print(user_obj.name,user_obj.id)#此时还没有创建对象,打印一下会发现id还是None
Session.add(user_obj)
Session.add(user_obj2)
print(user_obj.name,user_obj.id)#此时也依然还没有创建

Session.commit()#现在才统一提交,创建数据

插入数据是使用sessionmaker,通过绑定上面创建的连接创建出一个类,生成session实例(相当于之前的cursor),用面向对象的方式创建两条记录,然后添加,最后commit就可以了

下面我们来看看数据库的增删改查:

查询:

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/test",encoding='utf-8')
Base = declarative_base()#生成orm基类
class User(Base):
  __tablename__ = 'user'#表名
  id = Column(Integer,primary_key=True)
  name = Column(String(32))
  password = Column(String(64))
Base.metadata.create_all(engine)#创建表结构
Session_class = sessionmaker(bind=engine)#创建与数据库的会话session class ,注意这里返回给session的是一个类,不是实例
Session = Session_class()#生成session实例
data=Session.query(User).filter_by(name="xiaoming").all()
#print(data[0].name,data[0].password)
print(data)

如果只是Session.query(User).filter_by(name="xiaoming"),只会看到一条sql语句:

filter_by()查出来的是一个列表,是一组数据

加上.all()

这个是一个对象,这也看不出来是那个,所以我们要手动去调出数据

我们用print(data[0].name,data[0].password):

这样就查出了数据

现在是查一条数据,如果filter_by()里面什么都不写:

data=Session.query(User).filter_by().all()

我们就查出了好几条数据,我们要循环才能看出来具体的数据。我们想要直接看到谁是谁,我们怎么办呢?

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/test",encoding='utf-8')
Base = declarative_base()#生成orm基类
class User(Base):
  __tablename__ = 'user'#表名
  id = Column(Integer,primary_key=True)
  name = Column(String(32))
  password = Column(String(64))
  def __repr__(self):
    return "<%s name:%s>" % (self.id,self.name)
Base.metadata.create_all(engine)#创建表结构
Session_class = sessionmaker(bind=engine)#创建与数据库的会话session class ,注意这里返回给session的是一个类,不是实例
Session = Session_class()#生成session实例
data=Session.query(User).filter_by().all()
print(data)

我们添加了__repr__()函数,这样看看运行结果:

这样就显现出我们查询的结果了。就相当于,如果你要查看什么数据,以什么格式的方式显示,就可以在__repr__这个函数中设置

在这里,我们用filter_by().all()查询出所有的数据,那我们用 filter_by().first() ,就可以查询出数据库中的第一条数据

上面我们用filter_by(name="xiaoming")查询出了姓名为xiaoming的数据,那我们想要查询 用户id>1的数据 应该怎么查询呢?

data=Session.query(User).filter(User.id>1).all()

多个条件查询:再加几个filter

data=Session.query(User).filter(User.id>1).filter(User.id<3).all()

修改:

data=Session.query(User).filter(User.id>1).first()
print(data)
data.name = "Jack Chen"
data.password = "555555"
Session.commit()

查询到你要修改的这个数据,然后想修改面向对象里的数据一样,对数据进行修改,最后commit()就可以了

删除:

data = Session.query(User).filter_by(name = 'Rain').first()
Session.delete(data)
Session.commit()

同样的,先查询到要删除的数据,然后对数据进行删除,最后提交commit

回滚:

fake_user = User(name = 'Rain',password = "123456")
Session.add(fake_user)
print(Session.query(User).filter(User.name.in_(['jack','rain'])).all())#这时候看看session里有了刚刚添加的数据
Session.rollback()#此时你rollback一下
print(Session.query(User).filter(User.name.in_(['jack','rain'])).all())#再查就发现刚刚添加的数据就没有了

运行结果看看:

这个时候可以看到一开始我们是能够看到刚刚插入的数据,但是回滚之后我们就看不到了,我们到数据库中看看:

我们插入一条数据看看

可以看出我们插入的数据的id是4,这样看来确实是先插入进去,然后回滚之后删除的

分组 统计:

统计:

Session.query(User).filter(User.name.in_(['xiaoming','rain'])).count()

分组:

from sqlalchemy import func
print(Session.query(func.count(User.name),User.name).group_by(User.name).all())

join多表查询:

Session.query(User,Student).filter(User.id == Student.id).all()
Session.query(User).join(Student).all()#这种写法必须要求两个表有外键关联

外键关联

我们先创建两个表student,study_record:

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,DATE,ForeignKey
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/xumingdb",encoding='utf-8')
Base = declarative_base()#生成orm基类
class Student(Base):
  __tablename__ = 'student'#表名
  id = Column(Integer,primary_key=True)
  name = Column(String(32),nullable=False)
  register_date = Column(DATE,nullable=False)
  def __repr__(self):
    return "<%s name:%s>" % (self.id,self.name)
class StudyRecord(Base):
  __tablename__ = 'study_record'#表名
  id = Column(Integer,primary_key=True)
  day = Column(Integer,nullable=False)
  status = Column(String(32),nullable=False)
  stu_id = Column(Integer,ForeignKey("student.id"))
  def __repr__(self):
    return "<%s day:%s>" % (self.id,self.day)
Base.metadata.create_all(engine)#创建表结构

外键表的创建,要用到ForeignKey("student.id")里面就直接是 表名.字段名

然后向两个表中插入数据:

Base.metadata.create_all(engine)#创建表结构
Session_class = sessionmaker(bind=engine)
session = Session_class()
s1 = Student(name = "xiaoming",register_date="2015-06-07")
s2 = Student(name = "huahua",register_date="2015-06-08")
s3 = Student(name = "caicai",register_date="2015-06-09")
s4 = Student(name = "zhazha",register_date="2015-06-04")
study_obj1 = StudyRecord(day = 1,status = "YES",stu_id=1)
study_obj2 = StudyRecord(day = 2,status = "NO",stu_id=1)
study_obj3 = StudyRecord(day = 3,status = "YES",stu_id=1)
study_obj4 = StudyRecord(day = 1,status = "YES",stu_id=2)
session.add_all([s1,s2,s3,s4])
session.add_all([study_obj1,study_obj2,study_obj3,study_obj4])
session.commit()

批量插入用add_all,里面用一个列表放入要插入的数据, 注意的是,因为建立了外键,所以在添加数据的时候,study_record的数据一定要在student表数据插入之后才能够被插入,如果一起插入就会报错

现在我们要查询xiaoming一共上了几节课,那应该怎么做呢:

import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,DATE,ForeignKey
from sqlalchemy.orm import sessionmaker,relationship
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/xumingdb",encoding='utf-8')
Base = declarative_base()#生成orm基类
class Student(Base):
  __tablename__ = 'student'#表名
  id = Column(Integer,primary_key=True)
  name = Column(String(32),nullable=False)
  register_date = Column(DATE,nullable=False)
  def __repr__(self):
    return "<%s name:%s>" % (self.id,self.name)
class StudyRecord(Base):
  __tablename__ = 'study_record'#表名
  id = Column(Integer,primary_key=True)
  day = Column(Integer,nullable=False)
  status = Column(String(32),nullable=False)
  stu_id = Column(Integer,ForeignKey("student.id"))
  student = relationship("Student",backref="my_study_record")
  def __repr__(self):
    return "<%s day:%s status:%s>" % (self.student.name,self.day,self.status)
Base.metadata.create_all(engine)#创建表结构
Session_class = sessionmaker(bind=engine)
session = Session_class()
stu_obj = session.query(Student).filter(Student.name=='xiaoming').first()
print(stu_obj.my_study_record)
session.commit()

注意上面代码标红的这个语句,我们引入了relationship,然后这个允许你在study_record表里通过backref字段反向查出所有它在student表里的关联项,实现了一个双向查找,即关联student表,在studyrecord中通过student字段就可以查 student表中的所有字段,反过来,我们可以在student表中通过 my_study_record字段反查studyrecord里面的数据,然后代表着我们在下面查到的xiaoming,可以.my_study_record就可以查询出在studyrecord表中还有xiaoming的id的数据项

多外键关联

首先我们创建两个表customer和address两个表,其中customer表中有address的两个外键:

import sqlalchemy
from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from sqlalchemy import create_engine
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/xumingdb",encoding='utf-8')
Base = declarative_base()
class Customer(Base):
  __tablename__ = 'customer'
  id = Column(Integer, primary_key=True)
  name = Column(String(64))
  billing_address_id = Column(Integer, ForeignKey("address.id"))
  shipping_address_id = Column(Integer, ForeignKey("address.id"))
  billing_address = relationship("Address")
  shipping_address = relationship("Address")
class Address(Base):
  __tablename__ = 'address'
  id = Column(Integer, primary_key=True)
  street = Column(String(64))
  city = Column(String(64))
  state = Column(String(64))
  def __repr__(self):
    return self.street
Base.metadata.create_all(engine) # 创建表结构

然后我们向两个表中插入数据:

from day12 import sqlalchemy_multi_fk
from sqlalchemy.orm import sessionmaker
Session_class = sessionmaker(bind=sqlalchemy_multi_fk.engine)
session = Session_class()
addr1 = sqlalchemy_multi_fk.Address(street="XiZangBeiLu",city="ShangHai",state="ShangHai")
addr2 = sqlalchemy_multi_fk.Address(street="YuHu",city="XiangTan",state="HuNan")
addr3 = sqlalchemy_multi_fk.Address(street="ZhongXinZhen",city="SuQian",state="JiangSu")
session.add_all([addr1,addr2,addr3])
c1 = sqlalchemy_multi_fk.Customer(name="xiaoming",billing_address=addr1,shipping_address=addr2)
c2 = sqlalchemy_multi_fk.Customer(name="jack",billing_address=addr3,shipping_address=addr3)
session.add_all([c1,c2])
session.commit()

这样插入会出现一个错误:

sqlalchemy.exc.AmbiguousForeignKeysError: Could not determine join condition between parent/child tables on relationship Customer.billing_address - there are multiple foreign key paths linking the tables. Specify the 'foreign_keys' argument, providing a list of those columns which should be counted as containing a foreign key reference to the parent table.

说白了就是我们现在在做关联查询的时候,有两个字段同时关联到了Address表中 ,在做反向查询的时候它分不清楚谁是谁,通过address反向查的时候分不清哪个字段代表billing_address,哪个字段是代表了shipping_address.那我们怎么解决呢?

billing_address = relationship("Address",foreign_keys=[billing_address_id])
shipping_address = relationship("Address",foreign_keys=[shipping_address_id])

在创建反向查询的语句中添加foreign_keys参数就可以了

添加数据成功!!

这个时候我们要查询customer的地址:

obj = session.query(sqlalchemy_multi_fk.Customer).filter(sqlalchemy_multi_fk.Customer.name=="xiaoming").first()
print(obj.name,obj.billing_address,obj.shipping_address)

多对多关系

现在让我们设计一个能描述“图书”与“作者”的关系的表结构,需求是:

1.一本书可以有好几个作者一起出版

2.一个作者可以写好几本书

首先我们看一下一般的思路 :

两个表,然后我们在遇到一本书有多个作者共同参与出版,就把作者id写在一起,但是这样不利于查询

那我们可以再添加一张表:

这就实现了双向的一对多,一个作者可以包含多本书,一本书可以包含多个作者。这就形成了多对多。

来看代码的实现:

首先还是先建立数据表:

from sqlalchemy import Table, Column, Integer,String,DATE, ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
engine = create_engine("mysql+pymysql://root:root@192.168.123.207/xumingdb",encoding='utf-8')
Base = declarative_base()
Base = declarative_base()
book_m2m_author = Table('book_m2m_author', Base.metadata,
            Column('book_id',Integer,ForeignKey('books.id')),
            Column('author_id',Integer,ForeignKey('authors.id')),
            )
class Book(Base):
  __tablename__ = 'books'
  id = Column(Integer,primary_key=True)
  name = Column(String(64))
  pub_date = Column(DATE)
  authors = relationship('Author',secondary=book_m2m_author,backref='books')
  def __repr__(self):
    return self.name
class Author(Base):
  __tablename__ = 'authors'
  id = Column(Integer, primary_key=True)
  name = Column(String(32))
  def __repr__(self):
    return self.name
Base.metadata.create_all(engine) # 创建表结构

这里我们使用了另外一种建立表的方式,建立了第三张表book_m2m_auther,这张表建立起来后基本上不需要我们去人为的添加数据,对用户来讲是不用关心这里面有什么数据,是由orm自动帮你维护的。也就不需要给它建立映射关系了。

但是在mysql端其实已经关联上了,因为外键已经建立好了,在orm查询的时候,还要做一个orm级别的 内存对象的映射:relationship,告诉book表和author表在查询数据的时候去哪张表里查询。

所以看上面的红色的代码,通过secondary这个字段去查第三张表。

这个时候就建立好了多对多的关系。我们就可以插入数据看效果:(先把表建立起来再说)

from day12 import sqlalchemy_multitomulti
from sqlalchemy.orm import sessionmaker
Session_class=sessionmaker(bind=sqlalchemy_multitomulti.engine)
session = Session_class()
b1 = sqlalchemy_multitomulti.Book(name="book1",pub_date="2014-05-16")
b2 = sqlalchemy_multitomulti.Book(name="book2",pub_date="2012-03-16")
b3 = sqlalchemy_multitomulti.Book(name="book3",pub_date="2016-06-16")
a1 = sqlalchemy_multitomulti.Author(name="xiaoming")
a2 = sqlalchemy_multitomulti.Author(name="jack")
a3 = sqlalchemy_multitomulti.Author(name="Rain")
b1.authors = [a1,a3]
b2.authors = [a2,a3]
b3.authors = [a1,a2,a3]
session.add_all([b1,b2,b3,a1,a2,a3])
session.commit()

上面红色标记是建立关联关系,这样建立出来之后,book_m2m_author表自动就会有数据。

当然如果我们想要插入中文的书。即插入的数据有中文,我们要怎么做呢:

engine = create_engine("mysql+pymysql://root:root@192.168.123.207/xumingdb?charset=utf8",encoding='utf-8')
Base = declarative_base()

需要在创建数据库连接的时候在数据库后面加上 ?charset=utf8

现在数据插入之后,最终要实现查询数据:

1.查看作者xiaoming出版了多少本书:

author_obj = session.query(sqlalchemy_multitomulti.Author).filter(sqlalchemy_multitomulti.Author.name=="xiaoming").first()
print(author_obj.books)

2.查看书b2是哪些作者出版的 :

book_obj = session.query(sqlalchemy_multitomulti.Book).filter(sqlalchemy_multitomulti.Book.id==2).first()
print(book_obj.authors)

多对多删除:

在删除数据的时候我们也同样的不需要管book_m2m_author表,sqlalchemy会自动帮我们把对应的数据删除:

通过书删除作者:

author_obj = session.query(sqlalchemy_multitomulti.Author).filter(sqlalchemy_multitomulti.Author.name=="xiaoming").first()
book_obj = session.query(sqlalchemy_multitomulti.Book).filter(sqlalchemy_multitomulti.Book.id==2).first()
book_obj.authors.remove(author_obj)
session.commit() 

这个时候图书2的关联关系会自动少一个

直接删除作者:

author_obj = session.query(sqlalchemy_multitomulti.Author).filter(sqlalchemy_multitomulti.Author.name=="xiaoming").first()
session.delete(author_obj)
session.commit()

总结

以上所述是小编给大家介绍的python使用mysql的两种使用方式,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

您可能感兴趣的文章:

  • python3使用PyMysql连接mysql数据库实例
  • 详解使用pymysql在python中对mysql的增删改查操作(综合)
  • python使用pymysql实现操作mysql
  • Python连接MySQL并使用fetchall()方法过滤特殊字符
  • 使用Python操作MySQL的一些基本方法
(0)

相关推荐

  • python使用pymysql实现操作mysql

    pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同.但目前pymysql支持python3.x而后者不支持3.x版本. 适用环境 python版本 >=2.6或3.3 mysql版本>=4.1 安装 可以使用pip安装也可以手动下载安装. 使用pip安装,在命令行执行如下命令: pip install PyMySQL 手动安装,请先下载.下载地址:https://github.com/PyMySQL/PyMySQL/tarball/pymysql-X.X. 其

  • python3使用PyMysql连接mysql数据库实例

    python语言的3.x完全不向前兼容,导致我们在python2.x中可以正常使用的库,到了python3就用不了了.比如说mysqldb 目前MySQLdb并不支持python3.x , Python3.x连接MySQL的方案有:oursql, PyMySQL, myconnpy 等. 下面来说下python3如何安装和使用pymysql,另外两个方案我会在以后再讲. 1.pymysql安装 pymysql就是作为python3环境下mysqldb的替代物,进入命令行,使用pip安装pymys

  • 详解使用pymysql在python中对mysql的增删改查操作(综合)

    这一次将使用pymysql来进行一次对MySQL的增删改查的全部操作,相当于对前五次的总结: 先查阅数据库: 现在编写源码进行增删改查操作,源码为: #!/usr/bin/python #coding:gbk import pymysql from builtins import int #将MysqlHelper的几个函数写出来 def connDB(): #连接数据库 conn=pymysql.connect(host="localhost",user="root&quo

  • 使用Python操作MySQL的一些基本方法

    前奏 为了能操作数据库, 首先我们要有一个数据库, 所以要首先安装Mysql, 然后创建一个测试数据库python_test用以后面的测试使用 CREATE DATABASE `python_test` CHARSET UTF8 导入数据库模块 import MySQLdb 连接数据库 con = MySQLdb.connect(host="localhost", user="root", passwd="******",db="pyt

  • Python连接MySQL并使用fetchall()方法过滤特殊字符

    来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作. 准备工作 需要有相应的环境和模块: Ubuntu 14.04 64bit Python 2.7.6 MySQLdb 注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单: sudo apt-get install MySQLdb 然后进入Python环境,import这个包,如果没有报

  • python使用mysql的两种使用方式

    Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymql pymsql是Python中操作MySQL的模块,在windows中的安装: pip install pymysql 入门:我们连接虚拟机中的centos中的mysql,然后查询test数据库中student表的数据 import pymysql #创建连接 conn = pymysql.connect(host='192.168.123.207',port=3306,user='r

  • Python实现多线程的两种方式分析

    本文实例讲述了Python实现多线程的两种方式.分享给大家供大家参考,具体如下: 目前python 提供了几种多线程实现方式 thread,threading,multithreading ,其中thread模块比较底层,而threading模块是对thread做了一些包装,可以更加方便的被使用. 2.7版本之前python对线程的支持还不够完善,不能利用多核CPU,但是2.7版本的python中已经考虑改进这点,出现了multithreading  模块.threading模块里面主要是对一些

  • php连接MySQL的两种方式对比

    记录一下PHP连接MySQL的两种方式. 先mock一下数据,可以执行一下sql. /*创建数据库*/ CREATE DATABASE IF NOT EXISTS `test`; /*选择数据库*/ USE `test`; /*创建表*/ CREATE TABLE IF NOT EXISTS `user` ( name varchar(50), age int ); /*插入测试数据*/ INSERT INTO `user` (name, age) VALUES('harry', 20), ('

  • Python实现屏幕截图的两种方式

    使用windows API 使用PIL中的ImageGrab模块 下面对两者的特点和用法进行详细解释. 一.Python调用windows API实现屏幕截图 好处是 灵活 速度快 缺点是: 写法繁琐 不跨平台 import time import win32gui, win32ui, win32con, win32api def window_capture(filename): hwnd = 0 # 窗口的编号,0号表示当前活跃窗口 # 根据窗口句柄获取窗口的设备上下文DC(Divice C

  • 用 Python 连接 MySQL 的几种方式详解

    尽管很多 NoSQL 数据库近几年大放异彩,但是像 MySQL 这样的关系型数据库依然是互联网的主流数据库之一,每个学 Python 的都有必要学好一门数据库,不管你是做数据分析,还是网络爬虫,Web 开发.亦或是机器学习,你都离不开要和数据库打交道,而 MySQL 又是最流行的一种数据库,这篇文章介绍 Python 操作 MySQL 的几种方式,你可以在实际开发过程中根据实际情况合理选择. 1.MySQL-python MySQL-python 又叫 MySQLdb,是 Python 连接 M

  • mysql查询字段类型为json时的两种查询方式

    表结构如下: id varchar(32) info json 数据: id = 1 info = {"age": "18","disname":"小明"} -------------------------------------------- 现在我需要获取info中disanme的值,查询方法有: 1. select t.id,JSON_EXTRACT(t.info,'$.disname') as disname fro

  • python对象转字典的两种实现方式示例

    本文实例讲述了python对象转字典的两种实现方式.分享给大家供大家参考,具体如下: 一. 方便但不完美的__dict__ 对象转字典用到的方法为__dict__. 比如对象对象a的属性a.name='wk', a.age=18, 那么如果直接将使用a.__dict__获得对应的字典的值为: {name: 'wk', aget:18}, 很方便, 但是也存在一些限制. 其不完美之处在于: 比如: class A(object): name = 'wukt' age = 18 def __init

  • 对Python使用mfcc的两种方式详解

    1.Librosa import librosa filepath = "/Users/birenjianmo/Desktop/learn/librosa/mp3/in.wav" y,sr = librosa.load(filepath) mfcc = librosa.feature.mfcc( y,sr,n_mfcc=13 ) 返回结构为(13,None)的np.Array,None表示任意数量 2.python_speech_features from python_speech_

  • python打印异常信息的两种实现方式

    1. 直接打印错误 try: # your code except KeyboardInterrupt: print("quit") except Exception as ex: print("出现如下异常%s"%ex) 如下例子 try: 2/0 except Exception as e: print(e) 结果为:division by zero 2. 用traceback模块打印 上述结果看不到具体错误的信息,如行数啥的,不方便调试的时候定位,因此也可以用

  • 详解查看Python解释器路径的两种方式

    进入python的安装目录, 查看python解释器 进入bin目录 # ls python(看一下是否有python解释器版本) # pwd (查看当前目录) 复制当前目录即可 1. 通过脚本查看 运行以下脚本,或者进入交互模式手动输入即可. import sys import os print('当前 Python 解释器路径:') print(sys.executable) r""" 当前 Python 解释器路径: C:\Users\jpch89\AppData\Lo

随机推荐