对numpy中轴与维度的理解

NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank.

For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.

[[ 1., 0., 0.],
 [ 0., 1., 2.]]

ndarray.ndim

数组轴的个数,在python的世界中,轴的个数被称作秩

>> X = np.reshape(np.arange(24), (2, 3, 4))
  # 也即 2 行 3 列的 4 个平面(plane)
>> X
array([[[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]],
    [[12, 13, 14, 15],
    [16, 17, 18, 19],
    [20, 21, 22, 23]]])

shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。

shape(x)

(2,3,4)

shape(x)[0]

2

或者

x.shape[0]

2

再来分别看每一个平面的构成:

>> X[:, :, 0]
array([[ 0, 4, 8],
    [12, 16, 20]])
>> X[:, :, 1]
array([[ 1, 5, 9],
    [13, 17, 21]])
>> X[:, :, 2]
array([[ 2, 6, 10],
    [14, 18, 22]])
>> X[:, :, 3]
array([[ 3, 7, 11],
    [15, 19, 23]])

也即在对 np.arange(24)(0, 1, 2, 3, ..., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向)

reshpae,是数组对象中的方法,用于改变数组的形状。

二维数组

#!/usr/bin/env python
# coding=utf-8
import numpy as np 

a=np.array([1, 2, 3, 4, 5, 6, 7, 8])
print a
d=a.reshape((2,4))
print d 

三维数组

#!/usr/bin/env python
# coding=utf-8
import numpy as np 

a=np.array([1, 2, 3, 4, 5, 6, 7, 8])
print a
f=a.reshape((2, 2, 2))
print f 

形状变化的原则是数组元素不能发生改变,比如这样写就是错误的,因为数组元素发生了变化。

#!/usr/bin/env python
# coding=utf-8
import numpy as np 

a=np.array([1, 2, 3, 4, 5, 6, 7, 8])
print a
print a.dtype
e=a.reshape((2,2))
print e 

注意:通过reshape生成的新数组和原始数组公用一个内存,也就是说,假如更改一个数组的元素,另一个数组也将发生改变。

#!/usr/bin/env python
# coding=utf-8
import numpy as np 

a=np.array([1, 2, 3, 4, 5, 6, 7, 8])
print a
e=a.reshape((2, 4))
print e
a[1]=100
print a
print e 

Python中reshape函数参数-1的意思

a=np.arange(0, 60, 10)
>>>a
array([0,10,20,30,40,50])
>>>a.reshape(-1,1)
array([[0],
[10],
[20],
[30],
[40],
[50]])

如果写成a.reshape(1,1)就会报错

ValueError:cannot reshape array of size 6 into shape (1,1)

>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],
    [3, 4],
    [5, 6]])

-1表示我懒得计算该填什么数字,由python通过a和其他的值3推测出来。

# 下面是两张2*3大小的照片(不知道有几张照片用-1代替),如何把所有二维照片给摊平成一维
>>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]])
>>> image.shape
(2, 2, 3)
>>> image.reshape((-1, 6))
array([[1, 2, 3, 4, 5, 6],
    [1, 1, 1, 1, 1, 1]])

以上这篇对numpy中轴与维度的理解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 对numpy中轴与维度的理解

    NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank. For example, t

  • 对numpy中shape的深入理解

    环境:Windows, Python2.7 一维情况: <span style="font-size:14px;">>>> import numpy as np >>> a = np.array([2,3,33]) >>> a array([ 2 3 33 ]) >>> print a [ 2 3 33 ] >>> a.shape (3, )</span> 一维情况中arr

  • NumPy中的维度Axis详解

    浅谈NumPy中的维度Axis NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组. (有人将ndim属性叫维度,将axis叫轴,我还是习惯将axis称之为维度,axis=0称为第一个维度) 二维数组的列子 下面是一个二维数组的列子: In [1]: import numpy as np In [2]: x = np.random.randint(0, 9, (2, 3)) In [3]: x Ou

  • Numpy 改变数组维度的几种方法小结

    来自 <Python数据分析基础教程:Numpy 学习指南(第2版)> Numpy改变数组维度的方法有: reshape() ravel() flatten() 用元组设置维度 transpose() resize() 下面将依次进行说明 0. 首先,创建一个多维数组 from numpy import * a = arange(24) 得到: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] 1.reshape

  • 详解Numpy扩充矩阵维度(np.expand_dims, np.newaxis)和删除维度(np.squeeze)的方法

    在操作矩阵的时候,不同的接口对于矩阵的输入维度要求不同,输入可能为1-D,2-D,3-D等等.下面介绍一下使用Numpy进行矩阵维度变更的相关方法.主要包括以下几种: 1.np.newaxis扩充矩阵维度 2.np.expand_dims扩充矩阵维度 3.np.squeeze删除矩阵中维度大小为1的维度 np.newaxis,np.expand_dims扩充矩阵维度: import numpy as np x = np.arange(8).reshape(2, 4) print(x.shape)

  • 给numpy.array增加维度的超简单方法

    输入: import numpy as np a = np.array([1, 2, 3]) print(a) 输出结果: array([1, 2, 3]) 输入: print(a[None]) 输出结果: array([[1, 2, 3]]) 输入: print(a[:,None]) 输出结果: array([[1],                       [2],                       [3]]) numpy数组的维度增减方法 使用np.expand_dims()

  • numpy模块中axis的理解与使用

    目录 首先为什么会有axis这个概念? axis的作用即如何理解 使用axis的相关函数 总结 首先为什么会有axis这个概念? 因为在numpy模块中,大多数处理的是矩阵或者多维数组,同时,对多维数组或者矩阵的操作有多种可能,为了帮助实现对数组或矩阵各种各样的功能,就有了axis 下面举个例子,选取不同的axis,对二维数组进行sum,mean,min,max的操作 >>> import numpy as np >>> arr=np.arange(16).reshap

  • Python 机器学习库 NumPy入门教程

    NumPy是一个Python语言的软件包,它非常适合于科学计算.在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库. 本文是对它的一个入门教程. 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的.它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器.由于它适用于任意类型的数据,这使得NumPy可以无缝和

  • 分布式服务Dubbo+Zookeeper安全认证实例

    前言 由于之前的服务都是在内网,Zookeeper集群配置都是走的内网IP,外网不开放相关端口.最近由于业务升级,购置了阿里云的服务,需要对外开放Zookeeper服务. 问题 Zookeeper+dubbo,如何设置安全认证?不想让其他服务连接Zookeeper,因为这个Zookeeper服务器在外网. 查询官方文档: Zookeeper 是 Apacahe Hadoop 的子项目,是一个树型的目录服务,支持变更推送,适合作为 Dubbo 服务的注册中心,工业强度较高,可用于生产环境,并推荐使

  • pytorch 数据集图片显示方法

    图片显示 pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用. 同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了 CIAFA10数据集 首先载入数据集,这里做了一些数据处理,包括图片尺寸.数据归一化等 import torch from torch.a

随机推荐