详解Python使用tensorflow入门指南

TensorFlow是Google公司2015年11月开源的第二代深度学习框架,是第一代框架DistBelief的改进版本.

TensorFlow支持python和c/c++语言, 可以在cpu或gpu上进行运算, 支持使用virtualenv或docker打包发布.

定义变量

为了使用tensorflow,首先我们需要导入它

import tensorflow as tf

对于符号变量,我们新建一个

x = tf.placeholder(tf.float32, [None, 784])

这里x并不是一个特定的值,只是一个占位符,后面我们需要用tensorflow进行计算式,我们会把它作为输入

在模型中,我们需要weights权重和biases偏置,这里就用Variable来处理定义,Variable可以在整个计算过程中modified

w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

在新建Variable的同时,我们也初始化了它,然后

y = tf.nn.softmax(tf.matmul(x, w) + b)

这样我们就成功的实现了我们的模型

训练

我们用cross-entropy作为我们的cost function

H_{y'}(y) = -\sum_i y'_i \log(y_i)

y就是我们预测的概率分布,y'是真实的概率分布

为了实现交叉熵,我们需要一个新的占位符来作为正确答案的输入

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reducen_sum(y_ * tf.log(y))

通过梯度下降来实现优化模型

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)

我们使用这个模型之前,最后一件我们需要做的事是

init = tf.initialize_all_variables()
with tf.Session() as sess:
  sess.run(init)

现在,我能可以训练1000次这个模型了,☺️

for i in xrange(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys})

使用随机数据的小batch就称为随机训练

模型评分

首先,我们对比真实的y_和模型所得y之间正确的个数有多少

correct_prediction = tf.equal(tf.argmax(y, 1), tf.agrmax(y_, 1))

这个会返回一个boolean列表,比如[True, False, True, True]

accuracy = tf.reduce_mean(tf.cast(correc_prediction, tf.float32))
print (sess.run(accuracy, feed_dict = {x: mnist.test.images, y_: minst.test.labels}))

最后就通过以上计算得到准确率

开始使用

TensorFlow并不是一个纯粹的神经网络框架, 而是使用数据流图进行数值分析的框架.

TensorFlow使用有向图(graph)表示一个计算任务.图的节点称为ops(operations)表示对数据的处理,图的边flow 描述数据的流向.

该框架计算过程就是处理tensor组成的流. 这也是TensorFlow名称的来源.

TensorFlow使用tensor表示数据. tensor意为张量即高维数组,在python中使用numpy.ndarray表示.

TensorFlow使用Session执行图, 使用Variable维护状态.tf.constant是只能输出的ops, 常用作数据源.

下面我们构建一个只有两个constant做输入, 然后进行矩阵乘的简单图:

from tensorflow import Session, device, constant, matmul

'''构建一个只有两个constant做输入, 然后进行矩阵乘的简单图:'''

#如果不使用with session()语句, 需要手动执行session.close().
#with device设备指定了执行计算的设备:
#  "/cpu:0": 机器的 CPU.
#  "/gpu:0": 机器的第一个 GPU, 如果有的话.
#  "/gpu:1": 机器的第二个 GPU, 以此类推.

with Session() as session: # 创建执行图的上下文
  with device('/cpu:0'): # 指定运算设备
    mat1 = constant([[3, 3]]) # 创建源节点
    mat2 = constant([[2], [2]])
    product = matmul(mat1, mat2) # 指定节点的前置节点, 创建图
    result = session.run(product) # 执行计算
    print(result)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 基于ubuntu16 Python3 tensorflow(TensorFlow环境搭建)
  • python使用tensorflow保存、加载和使用模型的方法
  • Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程
  • python tensorflow基于cnn实现手写数字识别
(0)

相关推荐

  • 基于ubuntu16 Python3 tensorflow(TensorFlow环境搭建)

    人最大的长处就是有厉害的大脑.电脑.手机等都是对人大脑的拓展.现今,我们每个人都有这个机会,让自己头脑在智能的帮助下,达到极高的高度.所以,拥抱科技,让智能产品成为我们个人智力的拓展,更好的去生活.去战斗. 用项目引导学习: 我们的目标是用现有最流行的谷歌开源框架TensorFlow,搭建一款儿童助学帮手.类似于现在已有的在售商品小米智能语音盒子之类的东西,. 一.Windows下安装虚拟机VMware Workstation,在虚拟机中安装Ubuntu(要善用搜索引擎,解决各类简单问题) 这里

  • python tensorflow基于cnn实现手写数字识别

    一份基于cnn的手写数字自识别的代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 加载数据集 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # 以交互式方式启动session # 如果不使用交互式session,则在启动s

  • Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程

    以此文记录Python与Tensorflow及其开发环境的安装与配置过程,以备以后参考. 1 硬件与系统条件 Win7 64位系统,显卡为NVIDIA GeforeGT 635M 2 安装策略 a.由于以上原因,选择在win7下安装cpu版的tensorflow,使用anconda安装,总结下来,这么做是代价最小的. b. 首先,不要急于下载Python,因为最新的版本可能会与Anaconda中的Python版本发生冲突.以目前(截止2017-06-17日)的情况,Anaconda选择Anaco

  • python使用tensorflow保存、加载和使用模型的方法

    使用Tensorflow进行深度学习训练的时候,需要对训练好的网络模型和各种参数进行保存,以便在此基础上继续训练或者使用.介绍这方面的博客有很多,我发现写的最好的是这一篇官方英文介绍: http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 我对这篇文章进行了整理和汇总. 首先是模型的保存.直接上代码: #!/usr/bin/env python #-*- c

  • 详解Python使用tensorflow入门指南

    TensorFlow是Google公司2015年11月开源的第二代深度学习框架,是第一代框架DistBelief的改进版本. TensorFlow支持python和c/c++语言, 可以在cpu或gpu上进行运算, 支持使用virtualenv或docker打包发布. 定义变量 为了使用tensorflow,首先我们需要导入它 import tensorflow as tf 对于符号变量,我们新建一个 x = tf.placeholder(tf.float32, [None, 784]) 这里x

  • 详解Python下Flask-ApScheduler快速指南

    引言:Flask是Python社区非常流行的一个Web开发框架,本文将尝试将介绍APScheduler应用于Flask之中. 1. Flask介绍 Flask是Python社区大名鼎鼎的"microframework",基于简单的核心,使用extension来增加其他功能,其提供非常丰富易用的扩展包, 比如: 2.  Flask-APScheduler 社区提供了一个Flask-APScheduler的模块,方便大家直接在Flask模块中使用APScheduler. 关于安装的命令,仍

  • 详解Python GUI编程之PyQt5入门到实战

    1. PyQt5基础 1.1 GUI编程学什么 大致了解你所选择的GUI库 基本的程序的结构:使用这个GUI库来运行你的GUI程序 各种控件的特性和如何使用 控件的样式 资源的加载 控件的布局 事件和信号 动画特效 界面跳转 设计工具的使用 1.2 PyQT是什么 QT是跨平台C++库的集合,它实现高级API来访问现代桌面和移动系统的许多方面.这些服务包括定位和定位服务.多媒体.NFC和蓝牙连接.基于Chromium的web浏览器以及传统的UI开发.PyQt5是Qt v5的一组完整的Python

  • 详解python如何引用包package

    python中引用包的方法: python中引用包可以使用"import 包名"语句引用包 示例:引入time import time 也可以用"from 包名 import 类名"的方式引用包 示例:引入time.time类 from time import time 内容扩展: 什么是Python Package 如何区分你看到的目录是一个Python Package包呢?其实很简单,你只要看这个名录下是否有"__init__.py"这个文件

  • 详解Python中的进程和线程

    进程是什么? 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及如何完成:数据集则是程序在执行过程中所需要使用的资源:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志. 线程是什么? 线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID.程序计数器.寄存器集合和堆栈共同组成.线程的引入减小了程序并发

  • 详解python中读取和查看图片的6种方法

    目录 1 OpenCV 2 imageio 3 PIL 4 scipy.misc 5 tensorflow 6 skimage 本文主要介绍了python中读取和查看图片的6种方法,分享给大家,具体如下: file_name1='test_imgs/spect/1.png' # 这是彩色图片 file_name2='test_imgs/mri/1.png' # 这是灰度图片 1 OpenCV 注:用cv2读取图片默认通道顺序是B.G.R,而不是通常的RGB顺序,所以读进去的彩色图直接显示会出现变

  • 详解Python如何实现批量为PDF添加水印

    目录 准备环境 获得经销商名字对应的列表 生成水印PDF 合并水印与目标PDF 总结 我们有时候需要把一些机密文件发给多个客户,为了避免客户泄露文件,会在机密文件中添加水印.每个客户收到的文件内容相同,但是水印都不相同.这样一来,如果资料泄露了,通过水印就知道是从谁手上泄露的. 今天,一个做市场的朋友找我咨询PDF加水印的问题,如下图所示: 他有一个Excel文件,文件里面有10000个经销商的名字,他要把价目表PDF发给这些经销商,每个经销商收到的PDF文件上面的水印都是这个经销商自己的名字.

  • 详解Python如何实现惰性导入-lazy import

    目录 前言 写代码实现 PEP0690 建议的做法 其一 其二 前言 如果你的 Python 程序程序有大量的 import,而且启动非常慢,那么你应该尝试懒导入,本文分享一种实现惰性导入的一种方法.虽然PEP0690已经提案让 Python 编译器(-L) 或者标准库加入这个功能,但目前的 Python 版本还未实现. 众所周知,Python 应用程序在执行用户的实际操作之前,会执行 import 操作,不同的模块可能来自不同的位置,某些模块的运行可能非常耗时,某些模块可能根本不会被用户调用,

  • 详解python里使用正则表达式的分组命名方式

    详解python里使用正则表达式的分组命名方式 分组匹配的模式,可以通过groups()来全部访问匹配的元组,也可以通过group()函数来按分组方式来访问,但是这里只能通过数字索引来访问,如果某一天产品经理需要修改需求,让你在它们之中添加一个分组,这样一来,就会导致匹配的数组的索引的变化,作为开发人员的你,必须得一行一行代码地修改.因此聪明的开发人员又想到一个好方法,把这些分组进行命名,只需要对名称进行访问分组,不通过索引来访问了,就可以避免这个问题.那么怎么样来命名呢?可以采用(?P<nam

  • 详解Python实现多进程异步事件驱动引擎

    本文介绍了详解Python实现多进程异步事件驱动引擎,分享给大家,具体如下: 多进程异步事件驱动逻辑 逻辑 code # -*- coding: utf-8 -*- ''' author: Jimmy contact: 234390130@qq.com file: eventEngine.py time: 2017/8/25 上午10:06 description: 多进程异步事件驱动引擎 ''' __author__ = 'Jimmy' from multiprocessing import

随机推荐