python多线程用法实例详解

本文实例分析了python多线程用法。分享给大家供大家参考。具体如下:

今天在学习尝试学习python多线程的时候,突然发现自己一直对super的用法不是很清楚,所以先总结一些遇到的问题。当我尝试编写下面的代码的时候:

代码如下:

class A():
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )
        print "B"
b = B()

出现:

super( B, self ).__init__()

TypeError: must be type, not classobj

最后发现原来是python中的新式类的问题,也就是A必须是新式类。解决方法如下两种:

(1)

代码如下:

class A( object ):
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )       ##这条语句是旧式的,存在潜在的问题,应该避免使用
        print "B"
b = B()

(2)

代码如下:

__metaclass__=type
class A():
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )    ##这条语句是旧式的,存在潜在的问题,应该避免使用
        print "B"
b = B()

注意:如果在super( B, self ).__init__(  )

语句中添加self,也就是super( B, self ).__init__( self ),会出现如下的错误:

super( B, self ).__init__( self )

TypeError: __init__() takes exactly 1 argument (2 given)

以上只是一点点本人的心得笔记,呵呵。

代码如下:

import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
n = myThread( "n" )
 
m.start()
n.start()

输出的结果:

starting==== m Mon Aug 08 21:55:41 2011

starting==== n Mon Aug 08 21:55:41 2011

如果一个进程的主线程运行完毕而子线程还在执行的话,那么进程就不会退出,直到所有子线程结束为止。比如下面的例子:

代码如下:

import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
m.start()
print "main end"
print

输出的结果为:

starting==== m Mon Aug 08 22:01:06 2011

main end

end==== m Mon Aug 08 22:01:11 2011

也就是主进程结束之后,子进程还没有结束

如果我们想在主进程结束的时候,子进程也结束的话,我们就应该使用setDaemon()函数。

实例如下:

代码如下:

import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
m.setDaemon( True )
m.start()
print "main end"
print

输出的结果为:starting====main end m Mon Aug 08 22:02:58 2011

可以看出,并没有打印出子进程m结束的时候本应该打印的“end===…”

简单的线程同步

个执行线程经常要共享数据,如果仅仅读取共享数据还好,但是如果多个线程要修改共享数据的话就可能出现无法预料的结果。

假如两个线程对象t1和t2都要对数值num=0进行增1运算,那么t1和t2都各对num修改10次的话,那么num最终的结果应该为20。但是如果当t1取得num的值时(假如此时num为0),系统把t1调度为“sleeping”状态,而此时t2转换为“running”状态,此时t2获得的num的值也为0,然后他把num+1的值1赋给num。系统又把t2转化为“sleeping”状态,t1为“running”状态,由于t1已经得到num值为0,所以他也把num+1的值赋给了num为1。本来是2次增1运行,结果却是num只增了1次。类似这样的情况在多线程同时执行的时候是有可能发生的。所以为了防止这类情况的出现就要使用线程同步机制。

最简单的同步机制就是“锁”

锁对象用threading.RLock类创建

代码如下:

mylock = threading.RLock()

如何使用锁来同步线程呢?线程可以使用锁的acquire() (获得)方法,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release() (释放)方法,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

代码如下:

import threading
mylock = threading.RLock()
class mythread(threading.Thread)
    ...
    def run(self ...):
        ...     #此处 不可以 放置修改共享数据的代码
        mylock.acquire()
        ...     #此处 可以 放置修改共享数据的代码
        mylock.release()
        ...     #此处 不可以 放置修改共享数据的代码

我们把修改共享数据的代码称为“临界区”,必须将所有“临界区”都封闭在同一锁对象的acquire()和release()方法调用之间。

锁只能提供最基本的同步级别。有时需要更复杂的线程同步,例如只在发生某些事件时才访问一个临界区(例如当某个数值改变时)。这就要使用“条件变量”。

条件变量用threading.Condition类创建

代码如下:

mycondition = threading.Condition()

条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

同步队列

我们经常会采用生产者/消费者关系的两个线程来处理一个共享缓冲区的数据。例如一个生产者线程接受用户数据放入一个共享缓冲区里,等待一个消费者线程对数据取出处理。但是如果缓冲区的太小而生产者和消费者两个异步线程的速度不同时,容易出现一个线程等待另一个情况。为了尽可能的缩短共享资源并以相同速度工作的各线程的等待时间,我们可以使用一个“队列”来提供额外的缓冲区。

创建一个“队列”对象,可以使用如下代码:

代码如下:

import Queue
myqueue = Queue.Queue(maxsize = 10)

Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中:

myqueue.put(10)

调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。

将一个值从队列中取出:

myqueue.get()

调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为1。如果队列为空且block为1,get()就使调用线程暂停,直至有项目可用。如果block为0,队列将引发Empty异常。

我们用一个例子来展示如何使用Queue:

代码如下:

# queue_example.py
from Queue import Queue
import threading
import random
import time
 
# Producer thread
class Producer( threading.Thread ):
    def __init__( self, threadname, queue ):
        threading.Thread.__init__( self, name = threadname )
        self.sharedata = queue
    def run( self ):
        for i in range( 20 ):
            print self.getName(), 'adding', i, 'to queue'
            self.sharedata.put( i )
            time.sleep( random.randrange( 10 ) / 10.0 )
            print self.getName(), 'Finished'
 
# Consumer thread
class Consumer( threading.Thread ):
    def __init__( self, threadname, queue ):
        threading.Thread.__init__( self, name = threadname )
        self.sharedata = queue
    def run( self ):
        for i in range( 20 ):
            print self.getName(), 'got a value:', self.sharedata.get()
            time.sleep( random.randrange( 10 ) / 10.0 )
            print self.getName(), 'Finished'
 
# Main thread
def main():
    queue = Queue()
    producer = Producer( 'Producer', queue )
    consumer = Consumer( 'Consumer', queue )
 
    print 'Starting threads ...'
    producer.start()
    consumer.start()
 
    producer.join()
    consumer.join()
 
    print 'All threads have terminated.'
 
if __name__ == '__main__':
    main()

程序输出的结果为:

Starting threads ...

Producer adding 0 to queue

Consumer got a value: 0

Producer Finished

Producer adding 1 to queue

Producer Finished

Producer adding 2 to queue

Consumer Finished

Consumer got a value: 1

Consumer Finished

Consumer got a value: 2

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 3 to queue

3

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 4 to queue

4

ConsumerProducer Finished

ConsumerFinished

got a value:Producer adding 5 to queue

5

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 6 to queue

Producer Finished

Producer adding 7 to queue

6

Consumer Finished

Consumer got a value: 7

Producer Finished

Producer adding 8 to queue

Producer Finished

Producer adding 9 to queue

Consumer Finished

Consumer got a value: 8

ConsumerProducer  FinishedFinished

ConsumerProducer  got a value:adding 109

to queue

Producer Finished

Producer adding 11 to queue

Producer Finished

Producer adding 12 to queue

ConsumerProducer  FinishedFinished

ConsumerProducer  got a value:adding 1310

to queue

Producer Finished

Producer adding 14 to queue

Consumer Finished

Consumer got a value: 11

Producer Finished

Producer adding 15 to queue

Producer Finished

Producer adding 16 to queue

Producer Finished

Producer adding 17 to queue

Producer Finished

Producer adding 18 to queue

Consumer Finished

Consumer got a value: 12

Producer Finished

Producer adding 19 to queue

Producer Finished

Consumer Finished

Consumer got a value: 13

Consumer Finished

Consumer got a value: 14

Consumer Finished

Consumer got a value: 15

Consumer Finished

Consumer got a value: 16

Consumer Finished

Consumer got a value: 17

Consumer Finished

Consumer got a value: 18

Consumer Finished

Consumer got a value: 19

Consumer Finished

All threads have terminated.

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • Python下的twisted框架入门指引

    什么是twisted? twisted是一个用python语言写的事件驱动的网络框架,他支持很多种协议,包括UDP,TCP,TLS和其他应用层协议,比如HTTP,SMTP,NNTM,IRC,XMPP/Jabber. 非常好的一点是twisted实现和很多应用层的协议,开发人员可以直接只用这些协议的实现.其实要修改Twisted的SSH服务器端实现非常简单.很多时候,开发人员需要实现protocol类. 一个Twisted程序由reactor发起的主循环和一些回调函数组成.当事件发生了,比如一个c

  • Python中os.path用法分析

    本文实例分析了Python中os.path用法.分享给大家供大家参考.具体如下: 复制代码 代码如下: #coding=utf-8 import os print os.path.abspath("d:\\new\\test.txt") print os.path.basename("d:\\new\\test.txt") print os.path.dirname("d:\\new\\test.txt") print os.path.exist

  • python实现堆栈与队列的方法

    本文实例讲述了python实现堆栈与队列的方法.分享给大家供大家参考.具体分析如下: 1.python实现堆栈,可先将Stack类写入文件stack.py,在其它程序文件中使用from stack import Stack,然后就可以使用堆栈了. stack.py的程序: 复制代码 代码如下: class Stack():      def __init__(self,size):          self.size=size;          self.stack=[];         

  • python多线程用法实例详解

    本文实例分析了python多线程用法.分享给大家供大家参考.具体如下: 今天在学习尝试学习python多线程的时候,突然发现自己一直对super的用法不是很清楚,所以先总结一些遇到的问题.当我尝试编写下面的代码的时候: 复制代码 代码如下: class A():     def __init__( self ):         print "A" class B( A ):     def __init__( self ):         super( B, self ).__in

  • Python 多线程的实例详解

     Python 多线程的实例详解 一)线程基础 1.创建线程: thread模块提供了start_new_thread函数,用以创建线程.start_new_thread函数成功创建后还可以对其进行操作. 其函数原型: start_new_thread(function,atgs[,kwargs]) 其参数含义如下: function: 在线程中执行的函数名     args:元组形式的参数列表.     kwargs: 可选参数,以字典的形式指定参数 方法一:通过使用thread模块中的函数创

  • Python随机数用法实例详解【基于random模块】

    本文实例讲述了Python随机数用法.分享给大家供大家参考,具体如下: 1. random.seed(int) 给随机数对象一个种子值,用于产生随机序列. 对于同一个种子值的输入,之后产生的随机数序列也一样. 通常是把时间秒数等变化值作为种子值,达到每次运行产生的随机系列都不一样 seed() 省略参数,意味着使用当前系统时间生成随机数 random.seed(10) print random.random() #0.57140259469 random.seed(10) print rando

  • Python作用域用法实例详解

    本文实例分析了Python作用域用法.分享给大家供大家参考,具体如下: 每一个编程语言都有变量的作用域的概念,Python也不例外,以下是Python作用域的代码演示: def scope_test(): def do_local(): spam = "local spam" def do_nonlocal(): nonlocal spam spam = "nonlocal spam" def do_global(): global spam spam = &quo

  • python生成器用法实例详解

    本文实例讲述了python生成器用法.分享给大家供大家参考,具体如下: 1. 生成器 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据.为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator).生成器是一类特殊的迭代器. 2. 创建生成器方法1 要创建一个生成器,有很多种方法.第一种方法很简单,只要把

  • python模块常用用法实例详解

    1.time模块(※※※※) import time #导入时间模块 print(time.time()) #返回当前时间的时间戳,可用于计算程序运行时间 print(time.localtime()) #返回当地时间的结构化时间格式,参数默认为时间戳 print(time.gmtime) #返回UTC时间的结构化时间格式 print(time.mktime(time.localtime())) #将结构化时间转换为时间戳 print(time.strftime("%Y-%m-%d %X&quo

  • python sys.argv[]用法实例详解

    sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始,以下两个例子说明: 1.使用sys.argv[]的一简单实例: 以下是sample1.py文件: import sys,os print sys.argv os.system(sys.argv[1]) 这个例子os.system接收命令行参数,运行参数指令,cmd命令行带参数运行python sample1.py notepad,将打开记事本程序. 2.这个例子是简明python教程上的,明

  • Python文件操作函数用法实例详解

    这篇文章主要介绍了Python文件操作函数用法实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 字符编码 二进制和字符之间的转换过程 --> 字符编码 ascii,gbk,shit,fuck 每个国家都有自己的编码方式 美国电脑内存中的编码方式为ascii ; 中国电脑内存中的编码方式为gbk , 美国电脑无法识别中国电脑写的程序 , 中国电脑无法识别美国电脑写的程序 现在硬盘中躺着 ascii/gbk/shit/fuck 编码的文件,

  • python scatter函数用法实例详解

    这篇文章主要介绍了python scatter函数用法实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 函数功能:寻找变量之间的关系. 调用签名:plt.scatter(x, y, c="b", label="scatter figure") x: x轴上的数值 y: y轴上的数值 c:散点图中的标记的颜色 label:标记图形内容的标签文本 代码实现: import matplotlib.pyplot as

  • Python 异常处理的实例详解

    Python 异常处理的实例详解 与许多面向对象语言一样,Python 具有异常处理,通过使用 try...except 块来实现. Note: Python v s. Java 的异常处理 Python 使用 try...except 来处理异常,使用 raise 来引发异常.Java 和 C++ 使用 try...catch 来处理异常,使用 throw 来引发异常. 异常在 Python 中无处不在:实际上在标准 Python 库中的每个模块都使用了它们,并且 Python 自已会在许多不

随机推荐