全排列算法的非递归实现与递归实现的方法(C++)

(一)非递归全排列算法
基本思想是:
    1.找到所有排列中最小的一个排列P.
    2.找到刚刚好比P大比其它都小的排列Q,
    3.循环执行第二步,直到找到一个最大的排列,算法结束.
下面用数学的方法描述:
给定已知序列 P =  A1A2A3An ( Ai!=Aj , (1<=i<=n  , 1<=j<=n, i != j  ) )
找到P的一个最小排列Pmin = P1P2P3Pn  有  Pi > P(i-1) (1 < i <= n)
从Pmin开始,总是目前得到的最大的排列为输入,得到下一个排列.
方法为:
1.从低位到高位(从后向前),找出“不符合趋势”的数字。即找到一个Pi,使Pi < P(i+1)。
  若找不到这样的pi,说明我们已经找到最后一个全排列,可以返回了。
2.在 P(i+1)P(i+2)Pn 中,找到一个Pj,便得 Pj"刚刚好大于"Pi.
  ("刚刚好大于"的意思是:在 P(i+1)P(i+2)Pn 中所有大于Pi的元素构成的集合中最小的元素.)
3.交换 Pi , Pj 的位置.注意:此处不改变i和j的值,改变的是Pi和Pj.
4.交换后, P1P2P3Pn  并不是准确的后一个排列。因为根据第1步的查找,我们有P(i+1) > P(i+2) > . > Pn
  即使进行了Pi和Pj的交换,这仍然是这一部分最大的一个排列。将此排列逆序倒置(变成最小的排列)即为所求的下一个排列.
5.重复步骤1-4,直到步骤1中找不到“不符合趋势”的数字.


代码如下:

//交换数组a中下标为i和j的两个元素的值
void swap(int* a,int i,int j)
{
    a[i]^=a[j];
    a[j]^=a[i];
    a[i]^=a[j];
}

//将数组a中的下标i到下标j之间的所有元素逆序倒置
void reverse(int a[],int i,int j)
{
    for(;i<j;++i,--j)
    {
         swap(a,i,j);
    }
}

void print(int a[],int length)
{
    for(int i=0;i<length;++i)
         cout<<a[i]<<" ";
    cout<<endl;
}

//求取全排列,打印结果
void combination(int a[],int length)
{
    if(length<2) return;

bool end=false;
    while(true)
    {
         print(a,length);

int i,j;
         //找到不符合趋势的元素的下标i
         for(i=length-2;i>=0;--i)
         {
             if(a[i]<a[i+1]) break;
             else if(i==0) return;
         }

for(j=length-1;j>i;--j)
         {
             if(a[j]>a[i]) break;
         }

swap(a,i,j);
         reverse(a,i+1,length-1);
    }
}

(二)递归算法
令E= {e1 , ..., en }表示n 个元素的集合,我们的目标是生成该集合的所有排列方式。令Ei 为E中移去元素i 以后所获得的集合,perm (X) 表示集合X 中元素的排列方式,ei . p e r m(X)表示在perm (X) 中的每个排列方式的前面均加上ei 以后所得到的排列方式。例如,如果E= {a, b, c},那么E1= {b, c},perm (E1 ) = ( b c, c b),e1 .perm (E1) = (a b c, a c b)。对于递归的基本部分,采用n = 1。当只有一个元素时,只可能产生一种排列方式,所以perm (E) = ( e),其中e 是E 中的唯一元素。当n > 1时,perm (E) = e1 .perm (E1 ) +e2 .p e r m(E2 ) +e3.perm (E3) + ⋯ +en .perm (En )。这种递归定义形式是采用n 个perm (X) 来定义perm (E), 其中每个X 包含n- 1个元素。至此,一个完整的递归定义所需要的基本部分和递归部分都已完成。
当n= 3并且E=(a, b, c)时,按照前面的递归定义可得perm (E) =a.perm ( {b, c} ) +b.perm ( {a,c} ) +c.perm ( {a, b} )。同样,按照递归定义有perm ( {b, c} ) =b.perm ( {c} ) +c.perm ( {b}), 所以a.perm ( {b, c} ) = ab.perm ( {c} ) + ac.perm ( {b}) = a b . c + ac.b = (a b c, a c b)。同理可得b.perm ( {a, c}) = ba.perm ( {c}) + bc.perm ( {a}) = b a . c + b c . a = (b a c, b c a),c.perm ( {a, b}) =ca.perm ( {b}) + cb.perm ( {a}) = c a . b + c b . a = (c a b, c b a)。所以perm (E) = (a b c, a c b, b a c, b c a,c a b, c b a)。注意a.perm ( {b, c} )实际上包含两个排列方式:abc 和a c b,a 是它们的前缀,perm ( {b, c} )是它们的后缀。同样地,ac.perm ( {b}) 表示前缀为a c、后缀为perm ( {b}) 的排列方式。程序1 - 1 0把上述perm (E) 的递归定义转变成一个C++ 函数,这段代码输出所有前缀为l i s t [ 0:k-1], 后缀为l i s t [ k:m] 的排列方式。调用Perm(list, 0, n-1) 将得到list[0: n-1] 的所有n! 个排列方式,在该调用中,k=0, m= n - 1,因此排列方式的前缀为空,后缀为list[0: n-1] 产生的所有排列方式。当k =m 时,仅有一个后缀l i s t [ m ],因此list[0: m] 即是所要产生的输出。当k<m时,先用list[k] 与l i s t [ k:m] 中的每个元素进行交换,然后产生list[k+1: m] 的所有排列方式,并用它作为list[0: k] 的后缀。S w a p是一个inline 函数,它被用来交换两个变量的值


代码如下:

template <class T>
inline void Swap(T& a, T& b)
{
    // 交换a和b
    T temp = a; a = b; b = temp;
}

template<class T>
void Perm(T list[], int k, int m)
{
    //生成list [k:m ]的所有排列方式
    int i;
    if (k == m)
    {
         //输出一个排列方式
         for (i = 0; i <= m; i++)
             cout << list [i];
         cout << endl;
    }
    else // list[k:m ]有多个排列方式
    {
         // 递归地产生这些排列方式
         for (i=k; i <= m; i++)
         {
             Swap (list[k], list[i]);
             Perm (list, k+1, m);
             Swap (list [k], list [i]);
         }
    }
}

(0)

相关推荐

  • 使用C++实现全排列算法的方法详解

    复制代码 代码如下: <P>不论是哪种全排列生成算法,都遵循着"原排列"→"原中介数"→"新中介数"→"新排列"的过程.</P><P>其中中介数依据算法的不同会的到递增进位制数和递减进位制数.</P><P>关于排列和中介数的一一对应性的证明我们不做讨论,这里仅仅给出了排列和中介数的详细映射方法.</P> · 递增进位制和递减进位制数  所谓递增进位制和递减

  • 基于C++实现的各种内部排序算法汇总

    提起排序算法相信大家都不陌生,或许很多人已经把它们记得滚瓜烂熟,甚至随时可以写出来.是的,这些都是最基本的算法.这里就把各种内部排序算法总结归纳了一下,包括插入排序(直接插入排序,折半插入排序,希尔排序).交换排序(冒泡排序,快速排序).选择排序(简单选择排序,堆排序).2-路归并排序.(另:至于堆排序算法,前面已经有一篇文章针对堆排序的算法实现做了详细的描述) C++实现代码如下: /*******************************************************

  • C++插入排序算法实例

    插入排序 没事喜欢看看数据结构和算法,增加自己对数据结构和算法的认识,同时也增加自己的编程基本功.插入排序是排序中比较常见的一种,理解起来非常简单.现在比如有以下数据需要进行排序: 10 3 8 0 6 9 2 当使用插入排序进行升序排序时,排序的步骤是这样的: 10 3 8 0 6 9 2 // 取元素3,去和10进行对比 3 10 8 0 6 9 2 // 由于10比3大,将10向后移动,将3放置在原来10的位置:再取8与前一个元素10进行对比 3 8 10 0 6 9 2 // 同理移动1

  • C++实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等

    本文实现了八个常用的排序算法:插入排序.冒泡排序.选择排序.希尔排序 .快速排序.归并排序.堆排序和LST基数排序 首先是算法实现文件Sort.h,代码如下: /* * 实现了八个常用的排序算法:插入排序.冒泡排序.选择排序.希尔排序 * 以及快速排序.归并排序.堆排序和LST基数排序 * @author gkh178 */ #include <iostream> template<class T> void swap_value(T &a, T &b) { T t

  • C++简单实现的全排列算法示例

    本文实例讲述了C++简单实现的全排列算法.分享给大家供大家参考,具体如下: #include "stdafx.h" #include <string> #include <algorithm> #include <iostream> void func(const char *str_in) { std::string str(str_in); std::sort(str.begin(),str.end()); do { std::cout<&

  • C++冒泡排序算法实例

    冒泡排序 大学学习数据结构与算法最开始的时候,就讲了冒泡排序:可见这个排序算法是多么的经典.冒泡排序是一种非常简单的排序算法,它重复地走访过要排序的数列,每一次比较两个数,按照升序或降序的规则,对比较的两个数进行交换.比如现在我要对以下数据进行排序: 10 3 8 0 6 9 2 当使用冒泡排序进行升序排序时,排序的步骤是这样的: 3 10 8 0 6 9 2  // 10和3进行对比,10>3,交换位置 3 8 10 0 6 9 2  // 10再和8进行对比,10>8,交换位置 3 8 0

  • C++归并排序算法实例

    归并排序 归并排序算法是采用分治法的一个非常典型的应用.归并排序的思想是将一个数组中的数都分成单个的:对于单独的一个数,它肯定是有序的,然后,我们将这些有序的单个数在合并起来,组成一个有序的数列.这就是归并排序的思想.它的时间复杂度为O(N*logN). 代码实现 复制代码 代码如下: #include <iostream> using namespace std;   //将有二个有序数列a[first...mid]和a[mid...last]合并. void mergearray(int

  • 利用C++的基本算法实现十个数排序

    冒泡排序法原理:它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 冒泡排序算法的运作如下:1.比较相邻的元素.如果第一个比第二个大,就交换他们两个. 2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 3.针对所有的元素重复以上的步骤,除了最后一个. 4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较. 示例代码:

  • C++堆排序算法的实现方法

    本文实例讲述了C++实现堆排序算法的方法,相信对于大家学习数据结构与算法会起到一定的帮助作用.具体内容如下: 首先,由于堆排序算法说起来比较长,所以在这里单独讲一下.堆排序是一种树形选择排序方法,它的特点是:在排序过程中,将L[n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素. 一.堆的定义 堆的定义如下:n个关键字序列L[n]成为堆,当且仅当该序列满足: ①L(i) <= L(2i)且L(i) <= L(2

  • C++选择排序算法实例

    选择排序 选择排序是一种简单直观的排序算法,它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换.在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常

  • C++线性时间的排序算法分析

    前面的文章已经介绍了几种排序算法,如插入排序(直接插入排序,折半插入排序,希尔排序).交换排序(冒泡排序,快速排序).选择排序(简单选择排序,堆排序).2-路归并排序(可以参考前一篇文章:各种内部排序算法的实现)等,这些排序算法都有一个共同的特点,就是基于比较. 本文将介绍三种非比较的排序算法:计数排序,基数排序,桶排序.它们将突破比较排序的Ω(nlgn)下界,以线性时间运行. 一.比较排序算法的时间下界 所谓的比较排序是指通过比较来决定元素间的相对次序. "定理:对于含n个元素的一个输入序列,

  • C++实现各种排序算法类汇总

    C++可实现各种排序算法类,比如直接插入排序.折半插入排序.Shell排序.归并排序.简单选择排序.基数排序.对data数组中的元素进行希尔排序.冒泡排序.递归实现.堆排序.用数组实现的基数排序等. 具体代码如下: #ifndef SORT_H #define SORT_H #include <iostream> #include <queue> using namespace std; // 1.直接插入排序 template<class ElemType> void

随机推荐