python实现三次样条插值

本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下

函数:

算法分析

三次样条插值。就是在分段插值的一种情况。

要求:

  • 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源)
  • 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续)
  • 加上边界条件。边界条件只需要给出两个方程。构建一个方程组,就可以解出所有的参数。

这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)

但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。

情况一:两边导数数值给出

这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。

情况一图像

情况一代码

import numpy as np
from sympy import *
import matplotlib.pyplot as plt

def f(x):
 return 1 / (1 + x ** 2)

def cal(begin, end, i):
 by = f(begin)
 ey = f(end)
 I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (
  ey - Ms[i + 1] / 6) * (n - begin)
 return I

def ff(x): # f[x0, x1, ..., xk]
 ans = 0
 for i in range(len(x)):
 temp = 1
 for j in range(len(x)):
  if i != j:
  temp *= (x[i] - x[j])
 ans += f(x[i]) / temp
 return ans

def calM():
 lam = [1] + [1 / 2] * 9
 miu = [1 / 2] * 9 + [1]
 # Y = 1 / (1 + n ** 2)
 # df = diff(Y, n)
 x = np.array(range(11)) - 5
 # ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]
 ds = [6 * (ff(x[0:2]) - 1)]
 for i in range(9):
 ds.append(6 * ff(x[i: i + 3]))
 # ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))
 ds.append(6 * (1 - ff(x[-2:])))
 Mat = np.eye(11, 11) * 2
 for i in range(11):
 if i == 0:
  Mat[i][1] = lam[i]
 elif i == 10:
  Mat[i][9] = miu[i - 1]
 else:
  Mat[i][i - 1] = miu[i - 1]
  Mat[i][i + 1] = lam[i]
 ds = np.mat(ds)
 Mat = np.mat(Mat)
 Ms = ds * Mat.I
 return Ms.tolist()[0]

def calnf(x):
 nf = []
 for i in range(len(x) - 1):
 nf.append(cal(x[i], x[i + 1], i))
 return nf

def calf(f, x):
 y = []
 for i in x:
 y.append(f.subs(n, i))
 return y

def nfSub(x, nf):
 tempx = np.array(range(11)) - 5
 dx = []
 for i in range(10):
 labelx = []
 for j in range(len(x)):
  if x[j] >= tempx[i] and x[j] < tempx[i + 1]:
  labelx.append(x[j])
  elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:
  labelx.append(x[j])
 dx = dx + calf(nf[i], labelx)
 return np.array(dx)

def draw(nf):
 plt.rcParams['font.sans-serif'] = ['SimHei']
 plt.rcParams['axes.unicode_minus'] = False
 x = np.linspace(-5, 5, 101)
 y = f(x)
 Ly = nfSub(x, nf)
 plt.plot(x, y, label='原函数')
 plt.plot(x, Ly, label='三次样条插值函数')
 plt.xlabel('x')
 plt.ylabel('y')
 plt.legend()

 plt.savefig('1.png')
 plt.show()

def lossCal(nf):
 x = np.linspace(-5, 5, 101)
 y = f(x)
 Ly = nfSub(x, nf)
 Ly = np.array(Ly)
 temp = Ly - y
 temp = abs(temp)
 print(temp.mean())

if __name__ == '__main__':
 x = np.array(range(11)) - 5
 y = f(x)

 n, m = symbols('n m')
 init_printing(use_unicode=True)
 Ms = calM()
 nf = calnf(x)
 draw(nf)
 lossCal(nf)

情况二:两边导数数值由函数本身算出

这里假设数值均为1。即 f′(xi)=S′(xi)(i=0,n)f′(xi)=S′(xi)(i=0,n)的情况。

情况二图像

情况二代码

import numpy as np
from sympy import *
import matplotlib.pyplot as plt

def f(x):
 return 1 / (1 + x ** 2)

def cal(begin, end, i):
 by = f(begin)
 ey = f(end)
 I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (
  ey - Ms[i + 1] / 6) * (n - begin)
 return I

def ff(x): # f[x0, x1, ..., xk]
 ans = 0
 for i in range(len(x)):
 temp = 1
 for j in range(len(x)):
  if i != j:
  temp *= (x[i] - x[j])
 ans += f(x[i]) / temp
 return ans

def calM():
 lam = [1] + [1 / 2] * 9
 miu = [1 / 2] * 9 + [1]
 Y = 1 / (1 + n ** 2)
 df = diff(Y, n)
 x = np.array(range(11)) - 5
 ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]
 # ds = [6 * (ff(x[0:2]) - 1)]
 for i in range(9):
 ds.append(6 * ff(x[i: i + 3]))
 ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))
 # ds.append(6 * (1 - ff(x[-2:])))
 Mat = np.eye(11, 11) * 2
 for i in range(11):
 if i == 0:
  Mat[i][1] = lam[i]
 elif i == 10:
  Mat[i][9] = miu[i - 1]
 else:
  Mat[i][i - 1] = miu[i - 1]
  Mat[i][i + 1] = lam[i]
 ds = np.mat(ds)
 Mat = np.mat(Mat)
 Ms = ds * Mat.I
 return Ms.tolist()[0]

def calnf(x):
 nf = []
 for i in range(len(x) - 1):
 nf.append(cal(x[i], x[i + 1], i))
 return nf

def calf(f, x):
 y = []
 for i in x:
 y.append(f.subs(n, i))
 return y

def nfSub(x, nf):
 tempx = np.array(range(11)) - 5
 dx = []
 for i in range(10):
 labelx = []
 for j in range(len(x)):
  if x[j] >= tempx[i] and x[j] < tempx[i + 1]:
  labelx.append(x[j])
  elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:
  labelx.append(x[j])
 dx = dx + calf(nf[i], labelx)
 return np.array(dx)

def draw(nf):
 plt.rcParams['font.sans-serif'] = ['SimHei']
 plt.rcParams['axes.unicode_minus'] = False
 x = np.linspace(-5, 5, 101)
 y = f(x)
 Ly = nfSub(x, nf)
 plt.plot(x, y, label='原函数')
 plt.plot(x, Ly, label='三次样条插值函数')
 plt.xlabel('x')
 plt.ylabel('y')
 plt.legend()

 plt.savefig('1.png')
 plt.show()

def lossCal(nf):
 x = np.linspace(-5, 5, 101)
 y = f(x)
 Ly = nfSub(x, nf)
 Ly = np.array(Ly)
 temp = Ly - y
 temp = abs(temp)
 print(temp.mean())

if __name__ == '__main__':
 x = np.array(range(11)) - 5
 y = f(x)

 n, m = symbols('n m')
 init_printing(use_unicode=True)
 Ms = calM()
 nf = calnf(x)
 draw(nf)
 lossCal(nf)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python中的插值 scipy-interp的实现代码

    具体代码如下所示: import numpy as np from matplotlib import pyplot as plt from scipy.interpolate import interp1d x=np.linspace(0,10*np.pi,num=20) y=np.sin(x) f1=interp1d(x,y,kind='linear')#线性插值 f2=interp1d(x,y,kind='cubic')#三次样条插值 x_pred=np.linspace(0,10*np.

  • python计算对角线有理函数插值的方法

    本文实例讲述了python计算对角线有理函数插值的方法.分享给大家供大家参考.具体实现方法如下: ''' p = rational(xData,yData,x) Evaluates the diagonal rational function interpolant p(x) that passes through he data points ''' from numpy import zeros def rational(xData,yData,x): m = len(xData) r =

  • python用插值法绘制平滑曲线

    本文实例为大家分享了python用插值法绘制平滑曲线的具体代码,供大家参考,具体内容如下 原图: 平滑处理后: 代码实现如下: # 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘

  • Python实现分段线性插值

    本文实例为大家分享了Python实现分段线性插值的具体代码,供大家参考,具体内容如下 函数: 算法 这个算法不算难.甚至可以说是非常简陋.但是在代码实现上却比之前的稍微麻烦点.主要体现在分段上. 图像效果 代码 import numpy as np from sympy import * import matplotlib.pyplot as plt def f(x): return 1 / (1 + x ** 2) def cal(begin, end): by = f(begin) ey =

  • python使用插值法画出平滑曲线

    本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下 实现所需的库 numpy.scipy.matplotlib 实现所需的方法 插值 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 拟合和插值的区别 简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点

  • python样条插值的实现代码

    本文实例为大家分享了python样条插值的具体实现代码,供大家参考,具体内容如下 import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 #导入数据 data1=pd.read_csv('data1.c

  • Python对数据进行插值和下采样的方法

    使用Python进行插值非常方便,可以直接使用scipy中的interpolate import numpy as np x1 = np.linspace(1, 4096, 1024) x_new = np.linspace(1, 4096, 4096) from scipy import interpolate tck = interpolate.splrep(x1, data) y_bspline = interpolate.splev(x_new, tck) 其中y_bspline就是从1

  • python实现三次样条插值

    本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下 函数: 算法分析 三次样条插值.就是在分段插值的一种情况. 要求: 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源) 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续) 加上边界条件.边界条件只需要给出两个方程.构建一个方程组,就可以解出所有的参数. 这里话,根据第一类样条作为边界.(就是知道两端节点的导数数值,然后来做三次样条插值) 但是这里也分为两种情况,分别是这个数值是

  • Python实现线性插值和三次样条插值的示例代码

    (1).函数 y = sin(x) (2).数据准备 #数据准备 X=np.arange(-np.pi,np.pi,1) #定义样本点X,从-pi到pi每次间隔1 Y= np.sin(X)#定义样本点Y,形成sin函数 new_x=np.arange(-np.pi,np.pi,0.1) #定义差值点 (3).样条插值 #进行样条差值 import scipy.interpolate as spi #进行一阶样条插值 ipo1=spi.splrep(X,Y,k=1) #样本点导入,生成参数 iy1

  • python实现数学模型(插值、拟合和微分方程)

    问题1 车辆数量估计 题目描述 交通管理部门为了掌握一座桥梁的通行情况,在桥梁的一端每隔一段不等的时间,连续记录1min内通过桥梁的车辆数量,连续观测一天24h的通过车辆,车辆数据如下表所示.试建立模型分析估计这一天中总共有多少车辆通过这座桥梁. python 实现(关键程序) def get_line(xn, yn): def line(x): index = -1 # 找出x所在的区间 for i in range(1, len(xn)): if x <= xn[i]: index = i

  • python实现拉格朗日插值及作图

    本文实例为大家分享了python实现拉格朗日插值及作图,供大家参考,具体内容如下 python代码 import numpy as np import matplotlib.pyplot as plt X = input("x的值:").split(' ') Y = input("y的值:").split(' ') x = input("要预测的值:") print('\n') X = np.array(X).astype(np.float64)

  • python 一维二维插值实例

    一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项

  • python的scipy实现插值的示例代码

    插值对于一些时间序列的问题可能比较有用. Show the code directly: import numpy as np from matplotlib import pyplot as plt from scipy.interpolate import interp1d x=np.linspace(0,10*np.pi,num=20) y=np.sin(x) f1=interp1d(x,y,kind='linear')#线性插值 f2=interp1d(x,y,kind='cubic')

  • python实现图像最近邻插值

    目录 引言: 1.最近邻插值算法思想 2.python实现最邻近插值 引言: 最近邻插值Nearest Neighbour Interpolate算法是图像处理中普遍使用的图像尺寸缩放算法,由于其实现简单计算速度快的特性深受工程师们的喜爱. 图像插值技术是图像超分辨率领域的重要研究方法之一,其目的是根据已有的低分辨率图像(Low Resolution,LR)获得高分辨率图像(High Resolution,HR). 本文一方面对最邻近插值算法的流程进行分析,另一方面借助python实现基本的最近

  • 利用Python批量生成任意尺寸的图片

    实现效果 通过源图片,在当前工作目录的/img目录下生成1000张,分别从1*1到1000*1000像素的图片. 效果如下: 目录结构 实现示例 # -*- coding: utf-8 -*- import threading from PIL import Image image_size = range(1, 1001) def start(): for size in image_size: t = threading.Thread(target=create_image, args=(s

随机推荐