C#采用递归实现阶乘的方法

本文实例讲述了C#采用递归实现阶乘的方法,供大家参考之用。通常来说,如果想实现一个阶乘,比如6 * 5 * 4 * 3 * 2 * 1,首先想到的可能是循环遍历。

如下示例所示:

class Program
{
    static void Main(string[] args)
    {
      Console.WriteLine("请输入一个数");
      int number = Convert.ToInt32(Console.ReadLine());
      double result = JieCheng(number);
      Console.WriteLine(number.ToString() + "的阶乘结果是:" + result.ToString());
      Console.ReadKey();
    }

    public static double JieCheng(int number)
    {
      if (number == 0)
      {
        return 0;
      }

      //初始值必须设置为1
      double result = 1;

      for (int i = number; i >= 1; i--)
      {
        result = result*i;
      }
      return result;
    }
}

但以上的阶乘还有一种实现方式:6 * (6-1) * (6-2) * (6-3) * (6-4) * (6-5) 或 6 * (6-1) * (5-1) * (4-1) * (3-1) * (2-1),也就是说后面数总是由前面的数减1得到的。

当实现的逻辑相同,且内部递归方法的参数可以由外部递归方法的参数,经过某种算法而获得,这正是递归登场的时候。

实现代码如下:

public static double JieCheng(int number)
{
  if (number == 0)
  {
 return 1;
  }

  return number * JieCheng(number - 1);
}

希望本文所述实例对学习算法的朋友能有所帮助。

(0)

相关推荐

  • C# 递归函数详细介绍及使用方法

    什么是递归函数/方法? 任何一个方法既可以调用其他方法也可以调用自己,而当这个方法调用自己时,我们就叫它递归函数或递归方法. 通常递归有两个特点: 1. 递归方法一直会调用自己直到某些条件被满足 2. 递归方法会有一些参数,而它会把一些新的参数值传递给自己. 那什么是递归函数?函数和方法没有本质区别,但函数仅在类的内部使用.以前C#中只有方法,从.NET 3.5开始才有了匿名函数. 所以,我们最好叫递归方法,而非递归函数,本文中将统一称之为递归. 在应用程序中为什么要使用递归?何时使用递归?如何

  • c#汉诺塔的递归算法与解析

    从左到右 A  B  C 柱 大盘子在下, 小盘子在上, 借助B柱将所有盘子从A柱移动到C柱, 期间只有一个原则: 大盘子只能在小盘子的下面. 如果有3个盘子, 大中小号, 越小的越在上面, 从上面给盘子按顺序编号 1(小),2(中),3(大), 后面的原理解析引用这里的编号. 小时候玩过这个游戏, 基本上玩到第7个,第8个就很没有耐心玩了,并且操作的动作都几乎相同觉得无聊.  后来学习编程, 认识到递归, 用递归解决汉诺塔的算法也是我除了简单的排序算法后学习到的第一种算法. 至于递归,简单来说

  • c#斐波那契数列(Fibonacci)(递归,非递归)实现代码

    //Main 复制代码 代码如下: using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace Fibonacci{    class Program    {        static void Main(string[] args)        {            Console.WriteLine("Would you like to know which

  • c#递归遍历文件夹示例

    代码很简单,指定需要递归遍历的文件夹和遍历规则就要可以运行了 复制代码 代码如下: /// <summary>/// 递归获取文件夹目录下文件/// </summary>/// <param name="pathName">需要递归遍历的文件夹</param>/// <param name="fileRule">遍历规则『委托』</param>public static void LoopFol

  • C# 递归查找树状目录实现方法

    1.递归查找树状目录 复制代码 代码如下: public partial class Form1 : Form    {        string path = @"F:\学习文件";//递归查找树状目录        public Form1()        {递归查找树状目录            InitializeComponent();        }        private void Form1_Load(object sender, EventArgs e) 

  • C#用递归算法解决八皇后问题

    1.引子 中国有一句古话,叫做"不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每走一步都更靠近目标结果一些,直到遇到障碍物,我们才考虑往回走.然后再继续尝试向前.通过这样的波浪式前进方法,最终达到目的地.当然整个过程需要很多往返,这样的前进方式,效率比较低下. 2.适用范围 适用于那些不存在简明的数学模型以阐明问题的本质,或者存在数学模型,但是难于实现的问题. 3.应用场景 在

  • C#算法之全排列递归算法实例讲解

    排列:从n个元素中任取m个元素,并按照一定的顺序进行排列,称为排列: 全排列:当n==m时,称为全排列: 比如:集合{ 1,2,3}的全排列为: 复制代码 代码如下: { 1 2 3} { 1 3 2 } { 2 1 3 } { 2 3 1 } { 3 2 1 } { 3 1 2 } 我们可以将这个排列问题画成图形表示,即排列枚举树,比如下图为{1,2,3}的排列枚举树,此树和我们这里介绍的算法完全一致: 算法思路: (1)n个元素的全排列=(n-1个元素的全排列)+(另一个元素作为前缀): (

  • C#用递归算法解决经典背包问题

    1.引子 我们人类是一种贪婪的动物,如果给您一个容量一定的背包和一些大小不一的物品,裝到背包里面的物品就归您,遇到这种好事大家一定不会错过,用力塞不一定是最好的办法,用脑子才行,下面就教您如何解决这样的问题,以获得更多的奖品. 2.应用场景 在一个物品向量中找到一个子集满足条件如下 : 1)这个子集加起来的体积大小不能大于指定阀值 2)这个物品子集加起来价值大小是向量V中所有满足条件1的子集中最大的 3.分析 背包问题有好多版本,本文只研究0/1版本,即对一个物体要么选用,要么就抛弃,不能将一个

  • C#递归算法寻找数组中第K大的数

    1.概述 国人向来喜欢论资排辈的,每个人都想当老大,实在当不成,当个老二,老三,老K也不错,您一定看过这样的争论: 两个人吵架,一个人非常强势,另外一个忍受不住了便说:"你算老几呀?",下面就通过这篇文章就是要解决找出老几的问题! 2.应用场景 在向量V[first,last)中查找出第K大元素的值 3.分析 如果利用排序算法将向量V排好序,那么第K大元素就是索引为v.length-k的元素了,这样能解决问题,但效率不高,因为这相当于为了歼灭敌人一个小队而动用了我们全军的力量,得不偿失

  • C#递归算法之分而治之策略

    1.分而治之的概念   分而治之是一种使用递归解决问题的算法,主要的技巧是将一个大的复杂的问题划分为多个子问题,而这些子问题可以作为终止条件,或者在一个递归步骤中得到解决,所有子问题的解决结合起来就构成了对原问题的解决 2.分而治之的优点和缺点 分而治之算法通常包括一个或者多个递归方法的调用,当这些调用将数据分隔成为独立的集合从而处理较小集合的时候,分而治之的策略将会有很高的效率,而在数据进行分解的时候,分而治之的策略可能会产生大量的重复计算,从而导致性能的降低. 3.画标尺程序的分析讲解 画标

随机推荐