详解python中asyncio模块

一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念。也通过这次整理更加深刻理解这个模块的使用

asyncio 是干什么的?

异步网络操作并发协程

python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程

现在的asyncio,有了很多的模块已经在支持:aiohttp,aiodns,aioredis等等 https://github.com/aio-libs 这里列出了已经支持的内容,并在持续更新

当然到目前为止实现协程的不仅仅只有asyncio,tornado和gevent都实现了类似功能

关于asyncio的一些关键字的说明:

event_loop 事件循环:程序开启一个无限循环,把一些函数注册到事件循环上,当满足事件发生的时候,调用相应的协程函数

coroutine 协程:协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环,由事件循环调用。

task 任务:一个协程对象就是一个原生可以挂起的函数,任务则是对协程进一步封装,其中包含了任务的各种状态

future: 代表将来执行或没有执行的任务的结果。它和task上没有本质上的区别

async/await 关键字:python3.5用于定义协程的关键字,async定义一个协程,await用于挂起阻塞的异步调用接口。

看了上面这些关键字,你可能扭头就走了,其实一开始了解和研究asyncio这个模块有种抵触,自己也不知道为啥,这也导致很长一段时间,这个模块自己也基本就没有关注和使用,但是随着工作上用python遇到各种性能问题的时候,自己告诉自己还是要好好学习学习这个模块。

定义一个协程

import time
import asyncio

now = lambda : time.time()

async def do_some_work(x):
  print("waiting:", x)

start = now()
# 这里是一个协程对象,这个时候do_some_work函数并没有执行
coroutine = do_some_work(2)
print(coroutine)
# 创建一个事件loop
loop = asyncio.get_event_loop()
# 将协程加入到事件循环loop
loop.run_until_complete(coroutine)

print("Time:",now()-start)

在上面带中我们通过async关键字定义一个协程(coroutine),当然协程不能直接运行,需要将协程加入到事件循环loop中

asyncio.get_event_loop:创建一个事件循环,然后使用run_until_complete将协程注册到事件循环,并启动事件循环

创建一个task

协程对象不能直接运行,在注册事件循环的时候,其实是run_until_complete方法将协程包装成为了一个任务(task)对象. task对象是Future类的子类,保存了协程运行后的状态,用于未来获取协程的结果

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
  print("waiting:", x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(task)
loop.run_until_complete(task)
print(task)
print("Time:",now()-start)

结果为:

<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex2.py:13>>
waiting: 2
<Task finished coro=<do_some_work() done, defined at /app/py_code/study_asyncio/simple_ex2.py:13> result=None>
Time: 0.0003514289855957031

创建task后,在task加入事件循环之前为pending状态,当完成后,状态为finished

关于上面通过loop.create_task(coroutine)创建task,同样的可以通过 asyncio.ensure_future(coroutine)创建task

关于这两个命令的官网解释: https://docs.python.org/3/library/asyncio-task.html

asyncio.ensure_future(coro_or_future, *, loop=None)¶
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

If the argument is a Future, it is returned directly.

https://docs.python.org/3/library/asyncio-eventloop.html

AbstractEventLoop.create_task(coro)
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

Third-party event loops can use their own subclass of Task for interoperability. In this case, the result type is a subclass of Task.

This method was added in Python 3.4.2. Use the async() function to support also older Python versions.

绑定回调

绑定回调,在task执行完成的时候可以获取执行的结果,回调的最后一个参数是future对象,通过该对象可以获取协程返回值。

import time
import asyncio

now = lambda : time.time()

async def do_some_work(x):
  print("waiting:",x)
  return "Done after {}s".format(x)

def callback(future):
  print("callback:",future.result())

start = now()
coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
print(task)
task.add_done_callback(callback)
print(task)
loop.run_until_complete(task)

print("Time:", now()-start)

结果为:

<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex3.py:13>>
<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex3.py:13> cb=[callback() at /app/py_code/study_asyncio/simple_ex3.py:18]>
waiting: 2
callback: Done after 2s
Time: 0.00039196014404296875

通过add_done_callback方法给task任务添加回调函数,当task(也可以说是coroutine)执行完成的时候,就会调用回调函数。并通过参数future获取协程执行的结果。这里我们创建 的task和回调里的future对象实际上是同一个对象

阻塞和await

使用async可以定义协程对象,使用await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行

耗时的操作一般是一些IO操作,例如网络请求,文件读取等。我们使用asyncio.sleep函数来模拟IO操作。协程的目的也是让这些IO操作异步化。

import asyncio
import time

now = lambda :time.time()

async def do_some_work(x):
  print("waiting:",x)
  # await 后面就是调用耗时的操作
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task)

print("Task ret:", task.result())
print("Time:", now() - start)

在await asyncio.sleep(x),因为这里sleep了,模拟了阻塞或者耗时操作,这个时候就会让出控制权。 即当遇到阻塞调用的函数的时候,使用await方法将协程的控制权让出,以便loop调用其他的协程。

并发和并行

并发指的是同时具有多个活动的系统

并行值得是用并发来使一个系统运行的更快。并行可以在操作系统的多个抽象层次进行运用

所以并发通常是指有多个任务需要同时进行,并行则是同一个时刻有多个任务执行

下面这个例子非常形象:

并发情况下是一个老师在同一时间段辅助不同的人功课。并行则是好几个老师分别同时辅助多个学生功课。简而言之就是一个人同时吃三个馒头还是三个人同时分别吃一个的情况,吃一个馒头算一个任务

import asyncio
import time

now = lambda :time.time()

async def do_some_work(x):
  print("Waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

start = now()

coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4)

tasks = [
  asyncio.ensure_future(coroutine1),
  asyncio.ensure_future(coroutine2),
  asyncio.ensure_future(coroutine3)
]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
  print("Task ret:",task.result())

print("Time:",now()-start)

运行结果:

Waiting: 1
Waiting: 2
Waiting: 4
Task ret: Done after 1s
Task ret: Done after 2s
Task ret: Done after 4s
Time: 4.004154920578003

总时间为4s左右。4s的阻塞时间,足够前面两个协程执行完毕。如果是同步顺序的任务,那么至少需要7s。此时我们使用了aysncio实现了并发。asyncio.wait(tasks) 也可以使用 asyncio.gather(*tasks) ,前者接受一个task列表,后者接收一堆task。

关于asyncio.gather和asyncio.wait官网的说明:

https://docs.python.org/3/library/asyncio-task.html

Return a future aggregating results from the given coroutine objects or futures.

All futures must share the same event loop. If all the tasks are done successfully, the returned future's result is the list of results (in the order of the original sequence, not necessarily the order of results arrival). If return_exceptions is true, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future.

https://docs.python.org/3/library/asyncio-task.html

Wait for the Futures and coroutine objects given by the sequence futures to complete. Coroutines will be wrapped in Tasks. Returns two sets of Future: (done, pending).

The sequence futures must not be empty.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return.

协程嵌套

使用async可以定义协程,协程用于耗时的io操作,我们也可以封装更多的io操作过程,这样就实现了嵌套的协程,即一个协程中await了另外一个协程,如此连接起来。

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
  print("waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

async def main():
  coroutine1 = do_some_work(1)
  coroutine2 = do_some_work(2)
  coroutine3 = do_some_work(4)
  tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3)
  ]

  dones, pendings = await asyncio.wait(tasks)
  for task in dones:
    print("Task ret:", task.result())

  # results = await asyncio.gather(*tasks)
  # for result in results:
  #   print("Task ret:",result)

start = now()

loop = asyncio.get_event_loop()
loop.run_until_complete(main())
print("Time:", now()-start)

如果我们把上面代码中的:

  dones, pendings = await asyncio.wait(tasks)
  for task in dones:
    print("Task ret:", task.result())

替换为:

  results = await asyncio.gather(*tasks)
  for result in results:
    print("Task ret:",result)

这样得到的就是一个结果的列表

不在main协程函数里处理结果,直接返回await的内容,那么最外层的run_until_complete将会返回main协程的结果。 将上述的代码更改为:

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
  print("waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

async def main():
  coroutine1 = do_some_work(1)
  coroutine2 = do_some_work(2)
  coroutine3 = do_some_work(4)
  tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3)
  ]
  return await asyncio.gather(*tasks)

start = now()

loop = asyncio.get_event_loop()
results = loop.run_until_complete(main())
for result in results:
  print("Task ret:",result)

print("Time:", now()-start)

或者返回使用asyncio.wait方式挂起协程。

将代码更改为:

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
  print("waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

async def main():
  coroutine1 = do_some_work(1)
  coroutine2 = do_some_work(2)
  coroutine3 = do_some_work(4)
  tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3)
  ]
  return await asyncio.wait(tasks)

start = now()

loop = asyncio.get_event_loop()
done,pending = loop.run_until_complete(main())
for task in done:
  print("Task ret:",task.result())

print("Time:", now()-start)

也可以使用asyncio的as_completed方法

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
  print("waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

async def main():
  coroutine1 = do_some_work(1)
  coroutine2 = do_some_work(2)
  coroutine3 = do_some_work(4)
  tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3)
  ]
  for task in asyncio.as_completed(tasks):
    result = await task
    print("Task ret: {}".format(result))

start = now()

loop = asyncio.get_event_loop()
loop.run_until_complete(main())
print("Time:", now()-start)

从上面也可以看出,协程的调用和组合非常灵活,主要体现在对于结果的处理:如何返回,如何挂起

协程的停止

future对象有几个状态:

Pending Running Done Cacelled

创建future的时候,task为pending,事件循环调用执行的时候当然就是running,调用完毕自然就是done,如果需要停止事件循环,就需要先把task取消。可以使用asyncio.Task获取事件循环的task

import asyncio
import time

now = lambda :time.time()

async def do_some_work(x):
  print("Waiting:",x)
  await asyncio.sleep(x)
  return "Done after {}s".format(x)

coroutine1 =do_some_work(1)
coroutine2 =do_some_work(2)
coroutine3 =do_some_work(2)

tasks = [
  asyncio.ensure_future(coroutine1),
  asyncio.ensure_future(coroutine2),
  asyncio.ensure_future(coroutine3),
]

start = now()

loop = asyncio.get_event_loop()
try:
  loop.run_until_complete(asyncio.wait(tasks))
except KeyboardInterrupt as e:
  print(asyncio.Task.all_tasks())
  for task in asyncio.Task.all_tasks():
    print(task.cancel())
  loop.stop()
  loop.run_forever()
finally:
  loop.close()

print("Time:",now()-start)

启动事件循环之后,马上ctrl+c,会触发run_until_complete的执行异常 KeyBorardInterrupt。然后通过循环asyncio.Task取消future。可以看到输出如下:

Waiting: 1
Waiting: 2
Waiting: 2
^C{<Task finished coro=<do_some_work() done, defined at /app/py_code/study_asyncio/simple_ex10.py:13> result='Done after 1s'>, <Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex10.py:15> wait_for=<Future pending cb=[Task._wakeup()]> cb=[_wait.<locals>._on_completion() at /usr/local/lib/python3.5/asyncio/tasks.py:428]>, <Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex10.py:15> wait_for=<Future pending cb=[Task._wakeup()]> cb=[_wait.<locals>._on_completion() at /usr/local/lib/python3.5/asyncio/tasks.py:428]>, <Task pending coro=<wait() running at /usr/local/lib/python3.5/asyncio/tasks.py:361> wait_for=<Future pending cb=[Task._wakeup()]>>}
False
True
True
True
Time: 1.0707225799560547

True表示cannel成功,loop stop之后还需要再次开启事件循环,最后在close,不然还会抛出异常

循环task,逐个cancel是一种方案,可是正如上面我们把task的列表封装在main函数中,main函数外进行事件循环的调用。这个时候,main相当于最外出的一个task,那么处理包装的main函数即可。

不同线程的事件循环

很多时候,我们的事件循环用于注册协程,而有的协程需要动态的添加到事件循环中。一个简单的方式就是使用多线程。当前线程创建一个事件循环,然后在新建一个线程,在新线程中启动事件循环。当前线程不会被block。

import asyncio
from threading import Thread
import time

now = lambda :time.time()

def start_loop(loop):
  asyncio.set_event_loop(loop)
  loop.run_forever()

def more_work(x):
  print('More work {}'.format(x))
  time.sleep(x)
  print('Finished more work {}'.format(x))

start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start))

new_loop.call_soon_threadsafe(more_work, 6)
new_loop.call_soon_threadsafe(more_work, 3)

启动上述代码之后,当前线程不会被block,新线程中会按照顺序执行call_soon_threadsafe方法注册的more_work方法, 后者因为time.sleep操作是同步阻塞的,因此运行完毕more_work需要大致6 + 3

新线程协程

import asyncio
import time
from threading import Thread

now = lambda :time.time()

def start_loop(loop):
  asyncio.set_event_loop(loop)
  loop.run_forever()

async def do_some_work(x):
  print('Waiting {}'.format(x))
  await asyncio.sleep(x)
  print('Done after {}s'.format(x))

def more_work(x):
  print('More work {}'.format(x))
  time.sleep(x)
  print('Finished more work {}'.format(x))

start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start))

asyncio.run_coroutine_threadsafe(do_some_work(6), new_loop)
asyncio.run_coroutine_threadsafe(do_some_work(4), new_loop)

上述的例子,主线程中创建一个new_loop,然后在另外的子线程中开启一个无限事件循环。 主线程通过run_coroutine_threadsafe新注册协程对象。这样就能在子线程中进行事件循环的并发操作,同时主线程又不会被block。一共执行的时间大概在6s左右。

您可能感兴趣的文章:

  • python并发2之使用asyncio处理并发
  • python中利用队列asyncio.Queue进行通讯详解
  • Python使用asyncio包处理并发详解
  • Python中使用asyncio 封装文件读写
  • 探索Python3.4中新引入的asyncio模块
  • 在Python3中使用asyncio库进行快速数据抓取的教程
(0)

相关推荐

  • 探索Python3.4中新引入的asyncio模块

    使用 Simple Protocol asyncio.BaseProtocol 类是asyncio模块中协议接口(protocol interface)的一个常见的基类.asyncio.Protocolclass 继承自asyncio.BaseProtocol 并为stream protocols提供了一个接口.下面的代码演示了asyncio.Protocol 接口的一个简单实现,它的行为1就像一个echo server,同时,它还会在Python的控制台中输出一些信息.SimpleEchoPr

  • Python使用asyncio包处理并发详解

    阻塞型I/O和GIL CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL),一次只允许使用一个线程执行 Python 字节码.因此,一个 Python 进程通常不能同时使用多个 CPU 核心. 然而,标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时都会释放GIL.这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程

  • python中利用队列asyncio.Queue进行通讯详解

    前言 本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. asyncio.Queue与其它队列是一样的,都是先进先出,它是为协程定义的 例子如下: import asyncio async def consumer(n, q): print('consumer {}: starting'.format(n)) while True: print('consumer {}: waiting for i

  • python并发2之使用asyncio处理并发

    asyncio 在Python 2的时代,高性能的网络编程主要是使用Twisted.Tornado和Gevent这三个库,但是它们的异步代码相互之间既不兼容也不能移植.如上一节说的,Gvanrossum希望在Python 3 实现一个原生的基于生成器的协程库,其中直接内置了对异步IO的支持,这就是asyncio,它在Python 3.4被引入到标准库. asyncio 这个包使用事件循环驱动的协程实现并发. asyncio 包在引入标准库之前代号 "Tulip"(郁金香),所以在网上搜

  • Python中使用asyncio 封装文件读写

    前言 和网络 IO 一样,文件读写同样是一个费事的操作. 默认情况下,Python 使用的是系统的阻塞读写.这意味着在 asyncio 中如果调用了 f = file('xx') f.read() 会阻塞事件循环. 本篇简述如何用 asyncio.Future 对象来封装文件的异步读写. 代码在 GitHub.目前仅支持 Linux. 阻塞和非阻塞 首先需要将文件的读写改为非阻塞的形式.在非阻塞情况下,每次调用 read 都会立即返回,如果返回值为空,则意味着文件操作还未完成,反之则是读取的文件

  • 在Python3中使用asyncio库进行快速数据抓取的教程

    web数据抓取是一个经常在python的讨论中出现的主题.有很多方法可以用来进行web数据抓取,然而其中好像并没有一个最好的办法.有一些如scrapy这样十分成熟的框架,更多的则是像mechanize这样的轻量级库.DIY自己的解决方案同样十分流行:你可以使用requests.beautifulsoup或者pyquery来实现. 方法如此多样的原因在于,数据"抓取"实际上包括很多问题:你不需要使用相同的工具从成千上万的页面中抓取数据,同时使一些Web工作流自动化(例如填一些表单然后取回

  • 详解python中asyncio模块

    一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai

  • 详解Python中string模块除去Str还剩下什么

    string模块可以追溯到早期版本的Python. 以前在本模块中实现的许多功能已经转移到str物品. 这个string模块保留了几个有用的常量和类来处理str物品. 字符串-文本常量和模板 目的:包含用于处理文本的常量和类. 功能 功能capwords()将字符串中的所有单词大写. 字符串capwords.py import string s = 'The quick brown fox jumped over the lazy dog.' print(s) print(string.capw

  • 详解Python中Addict模块的使用方法

    目录 介绍 1.安装 2.用法 3.要牢记的事情 4.属性,如键.item等 5.默认值 6.转化为普通字典 7.计数 8.更新 9.Addict 是怎么来的 介绍 Addit 是一个Python模块,除了提供标准的字典语法外,Addit 生成的字典的值既可以使用属性来获取,也可以使用属性进行设置. 这意味着你不用再写这样的字典了: body = {     'query': {         'filtered': {             'query': {              

  • 详解Python中matplotlib模块的绘图方式

    目录 1.matplotlib之父简介 2.matplotlib图形结构 3.matplotlib两种画绘图方法 方法一:使用matplotlib.pyplot 方法二:面向对象方法 1.matplotlib之父简介 matplotlib之父John D. Hunter已经去世,他的一生辉煌而短暂,但是他开发的的该开源库还在继续着辉煌.国内介绍的资料太少了,查阅了一番整理如下: 1968 出身于美国的田纳西州代尔斯堡. 之后求学于普林斯顿大学. 2003年发布Matplotlib 0.1版,初衷

  • 一文详解Python中logging模块的用法

    目录 一.低配logging 1.v1 2.v2 3.v3 二.高配logging 1.配置日志文件 2.使用日志 三.Django日志配置文件 一.低配logging 日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别. 1.v1 import logging logging.debug('调试信息') logging.info('正常信息') logging

  • 详解Python中openpyxl模块基本用法

    Python操作EXCEL库的简介 1.1 Python官方库操作excel Python官方库一般使用xlrd库来读取Excel文件,使用xlwt库来生成Excel文件,使用xlutils库复制和修改Excel文件,这三个库只支持到Excel2003. 1.2 第三方库openpyxl介绍 第三方库openpyxl(可读写excel表),专门处理Excel2007及以上版本产生的xlsx文件,xls和xlsx之间转换容易. 注意:如果文字编码是"gb2312" 读取后就会显示乱码,请

  • 详解python中的模块及包导入

    python中的导入关键字:import 以及from  import 1.import import一般用于导入包以及模块. 不过有个小问题: (1)当导入的是模块的时候是可以直接可以使用模块内的函数以及变量的, 比如说:包名为:com.test,在这个包底下有个模块为a.py,那么当其他包中的模块想要引入a模块的时候写法为 import com.test.a 在b.py中调用的方式为:com.test.a.(a中的函数或者变量),而不能直接写为a.(a中的函数名或者变量) (2)当导入的是包

  • 详解Python中Pyyaml模块的使用

    一.YAML是什么 YAML是专门用来写配置文件的语言,远比JSON格式方便. YAML语言的设计目标,就是方便人类读写. YAML是一种比XML和JSON更轻的文件格式,也更简单更强大,它可以通过缩进来表示结构,是不是听起来就和Python很搭? 顾名思义,用语言编写的文件就可以称之为YAML文件.PyYaml是Python的一个专门针对YAML文件操作的模块,使用起来非常简单 安装 pip install pyyaml # 如果是py2,使用 pip install yaml 二.PyYam

  • 举例详解Python中threading模块的几个常用方法

    threading.Thread Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run方法:另一种是创建一个threading.Thread对象,在它的初始化函数(__init__)中将可调用对象作为参数传入.下面分别举例说明.先来看看通过继承threading.Thread类来创建线程的例子: #coding=gbk import threading, time, random count = 0 cl

  • 举例详解Python中smtplib模块处理电子邮件的使用

    在基于互联网的应用中,程序经常需要自动地发送电子邮件.如:一个网站的注册系统会在用户注册时发送一封邮件来确认注册:当用户忘记登陆密码的时候,通过邮件来取回密码.smtplib模块是python中smtp(简单邮件传输协议)的客户端实现.我们可以使用smtplib模块,轻松的发送电子邮件.下面的例子用了不到十行代码来发送电子邮件: #coding=gbk import smtplib smtp = smtplib.SMTP() smtp.connect("smtp.yeah.net",

随机推荐