删除python pandas.DataFrame 的多重index实例

如下dataframe想要删除多层index

top1000[:10] 
name sex births year prop
year sex
1880 F 0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
5 Margaret F 1578 1880 0.017342
6 Ida F 1472 1880 0.016177
7 Alice F 1414 1880 0.015540
8 Bertha F 1320 1880 0.014507
9 Sarah F 1288 1880 0.014155
top1000.index = top1000.index.droplevel()
top1000.index = top1000.index.droplevel()
top1000[:10]
name sex births year prop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
5 Margaret F 1578 1880 0.017342
6 Ida F 1472 1880 0.016177
7 Alice F 1414 1880 0.015540
8 Bertha F 1320 1880 0.014507
9 Sarah F 1288 1880 0.014155

Out[484]:

name sex births year prop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
5 Margaret F 1578 1880 0.017342
6 Ida F 1472 1880 0.016177
7 Alice F 1414 1880 0.015540
8 Bertha F 1320 1880 0.014507
9 Sarah F 1288 1880 0.014155

以上这篇删除python pandas.DataFrame 的多重index实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pandas将DataFrame的列变成行索引的方法

    pandas提供了set_index方法可以将DataFrame的列(多列)变成行索引,通过reset_index方法可以将层次化索引的级别会被转移到列里面. 1.DataFrame的set_index方法 data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b","c"],columns=["A","B","C"])

  • pandas.dataframe按行索引表达式选取方法

    需要把一个从csv文件里读取来的数据集等距抽样分割,这里用到了列表表达式和dataframe.iloc 先生成索引列表: index_list = ['%d' %i for i in range(df.shape[0]) if i % 3 == 0] 在dataframe中选取 sample_df = df.iloc[index_list] 合起来 sample_df = df.iloc[['%d' %i for i in range(df.shape[0]) if i % 3 == 0]] 各

  • python pandas库中DataFrame对行和列的操作实例讲解

    用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S

  • 在Python中pandas.DataFrame重置索引名称的实例

    例子: 创建DataFrame ### 导入模块 import numpy as np import pandas as pd import matplotlib.pyplot as plt test = pd.DataFrame({'a':[11,22,33],'b':[44,55,66]}) """ a b 0 11 44 1 22 55 2 33 66 """ 更改列名方法一:rename test.rename(columns={'a':

  • pandas修改DataFrame列名的方法

    在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>

  • python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

    相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

  • 删除python pandas.DataFrame 的多重index实例

    如下dataframe想要删除多层index top1000[:10] name sex births year prop year sex 1880 F 0 Mary F 7065 1880 0.077643 1 Anna F 2604 1880 0.028618 2 Emma F 2003 1880 0.022013 3 Elizabeth F 1939 1880 0.021309 4 Minnie F 1746 1880 0.019188 5 Margaret F 1578 1880 0.

  • python pandas dataframe 行列选择,切片操作方法

    SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i

  • python pandas dataframe 按列或者按行合并的方法

    concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是

  • python Pandas 读取txt表格的实例

    运行环境 Python 2.7 操作实例 1.原始文本格式:空格分隔的txt,例如 2016-03-22 00:06:24.4463094 中文测试字符 2016-03-22 00:06:32.4565680 需要编辑encoding 2016-03-22 00:06:32.6835965 abc 2016-03-22 00:06:32.8041945 egb 2.pandas 读取数据 import pandas as pd data = pd.read_table('Z:/test.txt'

  • python pandas.DataFrame.loc函数使用详解

    官方函数 DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array. # 可以使用label值,但是也可以使用布尔值 Allowed inputs are: # 可以接受单个的label,多个label的列表,多个label的切片 A singl

  • python+pandas分析nginx日志的实例

    需求 通过分析nginx访问日志,获取每个接口响应时间最大值.最小值.平均值及访问量. 实现原理 将nginx日志uriuriupstream_response_time字段存放到pandas的dataframe中,然后通过分组.数据统计功能实现. 实现 1.准备工作 #创建日志目录,用于存放日志 mkdir /home/test/python/log/log #创建文件,用于存放从nginx日志中提取的$uri $upstream_response_time字段 touch /home/tes

  • Python pandas.DataFrame 找出有空值的行

    0.摘要 pandas中DataFrame类型中,找出所有有空值的行,可以使用.isnull()方法和.any()方法. 1.找出含有空值的行 方法:DataFrame[DataFrame.isnull().T.any()] 其中,isnull()能够判断数据中元素是否为空值:T为转置:any()判断该行是否有空值. import pandas as pd import numpy as np n = np.arange(20, dtype=float).reshape(5,4) n[2,3]

  • Python中将dataframe转换为字典的实例

    有时候,在Python中需要将dataframe类型转换为字典类型,下面的方法帮助我们解决这一问题. 任务代码. # encoding: utf-8 import pandas as pd a = ['Name', 'Age', 'Gender'] b = ['Ali', '19', 'China'] data = pd.DataFrame(zip(a, b), columns=['project', 'attribute']) print data dict_country = data.se

  • pandas Dataframe行列读取的实例

    如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as pd from pandas import Series,DataFrame data = {'a':[1,2,3], 'c':[4,5,6], 'b':[7,8,9] } frame = DataFrame(data,index=['one','two','three']) print(frame) print(fra

随机推荐